Effect of Bosentan and Losartan on Oxidative Stress and Cortisol level in Endothelin-1 and Angiotensin II Treated Rats

Almas M.R Mahmud1 Ismail Mustafa Maulood1* Sarkawt Hamad Ameen Hamad2

1 Biology Department, College of Science, Salahaddin University-Erbil, Kurdistan, Iraq
2 Biology Department, Faculty of Science, Soran University, Soran, Iraq;
*Corresponding Author; E-mail: Ismail.Maulood@su.eedu.krd

1. INTRODUCTION
Steroids among them glucocorticoids contribute to many physiological changes such as disease, trauma, and toxins which are well responded by corticoids (Fernandes et al. 2008). The cortisol hormone which secretes in adrenal cortex play important roles in developing oxidative stress and increases free radicals level (Mercanoglu et al. 2008). ET-1 and Ang II stimulate adrenocorticioid secretion (Vierhapper et al. 1995; Rabano et al. 2014). On the other hand, ET-1 is widely synthesized in the endothelial cell, it is well known as a potent vasoconstricter by constricting blood vessels strongly (Lin et al. 2014). ET-1 has two receptor sub types, ET-1A which performs cell proliferation, vasoconstriction and many other physiological actions, thus through ET-1B facilitates vasodilation (Maguire and Davenport 2014). For antagonizing ET-1 many synthetic antagonists have been produced to block single or dual ET-1 receptors, such as BQ123, BQ 788 and Bosentan, but only bosentan reaches final step in the pharmaceutical process, and used as a drug (Busnadiego et al. 2014). Bosentan is ET-1A/B

ARTICLE INFO

Article History:
Received: 03/01/2016
Accepted: 04/04/2016
Published: 10/10/2016

Keywords:
ET-1;
Ang II;
Cortisol;
Magnesium;
Oxidative Stress.

*Corresponding Author:
Ismail Mustafa Maulood
Email: Ismail.Maulood@su.eedu.krd

ABSTRACT

The exact mechanism by which Endothelin-1 (ET-1), Angiotensin II (Ang II), and their antagonists act in physiology are controversial subjects among researchers, therefore the present work aimed to investigate the effects of bosentan and losartan on oxidative stress and serum cortisol level in rats. This study includes two experiments. The first one included four groups: The first group treated with saline, the second group treated with ET-1, the third group treated with Bosentan + ET-1, and the fourth group treated with Losartan + ET-1. The second experiment also included four groups: The first group treated with saline, the second group treated with Ang II, the third group treated with Losartan + Ang II, and the fourth group treated with Bosentan + Ang II. The results demonstrate that, bolus infusion of losartan significantly decreased serum cortisol level versus ET-1. Bosentan significantly decreased cortisol level compared with Ang II infusion. Neither losartan nor Ang II changed serum cortisol significantly versus Ang II and saline groups. Furthermore, bosentan caused rising in malondialdehyde (MDA) concentration compared to ET-1 infusion, but losartan slightly decreased it. MDA in Ang II infusion dramatically became high in comparison with saline infusion, and both losartan. Serum glucose concentration clearly rose in losartan infusion, while bosentan did affect it significantly. Serum chloride in both bosentan and losartan significantly increased compared to ET-1. Both ET-1 and Ang II infusions for one hour led to increasing Mg++ concentration versus saline infusion. In conclusion, both ET-1 and Ang II antagonists reduced cortisol level, but they did not change lipid peroxidation marker as elevated by Ang II infusion. Interestingly, ET-1 and Ang II markedly could increase serum Mg++ levels, but their antagonists did not return it to the normal levels.
dual receptor antagonist which is used to treat pulmonary hypertension (Markova et al. 2013). Angiotensin II secrets in many tissues, but it produces from a precursor of angiotensin I by action of angiotensin converting enzyme. It has a variety of physiological functions through binding with two different types of Ang II receptors (Barrett et al. 2010). Ang II subtype one receptor (AT₁) is responsible for enhancing cell proliferation, vasoconstriction, oxidative stress, production of other endocrine hormones, and increase Na⁺ / K⁺ pump activity (Lottermoser et al. 2003; Rabano et al. 2004; Seifi et al. 2014). While, stimulation of Ang II subtype two receptor (AT₂) leads to vasodilation, pro-apoptotic, anti-inflammation and anti-growth (Savoia et al. 2011). Thus, one of the most anti-hypertension drug is losartan, it could attenuate Ang II hypertensive effects through an antagonizing AT₁ receptor (Shiga et al. 2014). Because of the interactions between ET-1 and Ang II, and their antagonist actions on the body organs are the most controversial subjects among researchers, therefore the present work aimed to investigate the effects of bosentan and losartan on oxidative stress and serum cortisol levels in rats.

MATERIALS AND METHODS

ANIMALS
Albino rats (Rattus norvegicus) were bred in the animal house belongs to Biology department, College of Science, Salahaddin University-Erbil. Forty-two male rats weigh between 300 – 400 grams have been used (six rats were kept in each plastic cage), overnight fasted (8-12) hours. They were allowed to free access of tap water ad libitum

ANIMAL ANESTHESIA AND CONTROL OF THE BODY TEMPERATURE
The animals were anesthetized by intraperitonal injection of a mixture of Ketamine hydrochloride 80 mg / Kg (Trittau, Germany) and Xylazin 12 mg / Kg (Interchem, Holland). The depth of anesthesia was monitored by loosing reflexes. The anesthesia remained for 1.5 – 2 hours and a supplement dose was used if necessary. The maximum volume anesthesia solution was 1ml / Kg; Rat’s body temperature was controlled by placing on an electrical heating pad between 35 - 37 °C.

PROCEDURE FOR TRACHEOSTOMY
Tracheostomy was performed to achieve good ventilation and avoiding bronchial obstruction. Sterile forceps were used to pull up neck skin in the middle, and about 2 -3 cm incision was made longitudinally; layers of the neck skin were removed and cleaned from the connective tissue, the platysma muscle was dissected to observe trachea. Fine iris scissors were used to slit incision of the ventral part of trachea. It must be managed as fast as possible to prevent rat from bleeding and hypoxia, then polythene tube 2 mm OD, 4-5 cm was inserted and was tightened by a ligature and for prevention of clot inside the tube it was wetted by heparinized normal saline 10 IU/ml. A syringe connected to a PE tube (ID 0.58 mm, OD 0.96 mm. England) had been used to control bronchial secretion, so any solutions present in the trachea removed by it.

CANNULATION OF FEMORAL VEIN FOR INTRAVENOUS INFUSION
Concave sterile scissors were used for making a small incision 2 - 3 cm on the right thigh. The outer layer of skin and matrix of collagen fibers had been removed, and cleaned carefully; a transient obstruction of blood back flow to the heart, then a 27 G ½ needle filled with heparinized normal saline 10 IU / ml was inserted into the vessel which was attached to the polythene tube (ID 0.58 mm, OD 0.96 mm. England), that was connected to infusion pump (Advance series 1200 infusion system, USA). Through a 10 ml sized syringe, immediately after insertion of cannula normal saline was infused (15 ml / h /Kg). The administration of normal saline continued for an hour and it called equilibration period, then the experimental design conducted. The wound was kept moisture through covering by a gauze with heparinized normal saline.

Design of the experiments
The experimental design includes two sub-experiments: Experiment A involved of four groups, each of six rats Group 1, Saline: Animals were infused with normal saline (15 ml / h/ Kg) after equilibration period, Group 2, Endothelin-1. Animals were infused with ET-1 (520 ng / min/ Kg), Group 3, Bosentan + Endothelin-1 : The rats were bolus infused with bosentan 10 mg/ 0.5ml / kg then continuously animals infused ET-1 (520 ng / min/ Kg), and Group 4, Losartan + Endothelin-1 : The rats were bolus infused with losartan 10 mg/ 0.5 ml / kg then continuously animals infused ET-1 (520 ng / min/ Kg). Experiment B also consisted of four groups each of six rats , Group 1, saline and treated as in experiment A, Group 2, Angiotensin II (n = 6) animals were infused Ang II (320 ng / min / Kg), Group 3, Losartan + Angiotensin II. The rats were infused bolus infusion of losartan 10 mg/ 0.5ml / kg then the animals continuously infused Ang II (320 ng / min / Kg); and Group 4 Bosentan + Angiotensin II :The rats were bolus infused with bosentan 10 mg/ 0.5ml / kg then continuously animals infused with Ang II (320 ng / min / Kg).

Collection of blood samples
At the end of the sixty minutes of infusion, about 7 ml of blood were obtained through puncturing of heart, then standing in a clean clot activator gel test tube for 30 minutes. The blood centrifuged at 1000 g for 15 minutes (Centromix-Mod. S-549), then serum was transferred into four clean eppendorf tubes and they were stored at -80 °C until assay (Sanyo – Ultra – Low Temperature, Japan).

Determination of serum cortisol
The enzyme-linked immunosorbet assay(ELISA) method was used for determination of serum cortisol. The essential reagents required for an enzyme immunoassay include antibody, enzyme-antigen conjugate and native antigen. Upon mixing biotinylated antibody, enzyme-antigen conjugate and a serum containing the native antigen, a competition reaction results between the native antigen and the enzyme-antigen conjugate for a limited number of antibody sites.

Determination of serum MDA
Thiobarbituric acid (TBA) was used to determine serum MDA, serum sample 150 µL and 1ml of 17.5% Trichloroacetic acid (TCA) were added into clean centrifuge test tube (Supe-Rior,W-Germany), TCA was allowed to deproteinize specimen. One ml of 0.66% TBA added into same tube and it was mixed well by vortex (Vortex-Genie, Model K-550-Ge, USA). The sample was allowed for boiling at 95 °C in the water bath (Memmert, Gmbh+Co.KG, Germany) for a period of 45 minutes and left at room temperature 25 °C to cool. One ml of 70% TCA added to precipitate the ruminant serum protein, centrifuged (Centromix-Mod. S-549) at 1000 g for 15 minutes. The pink colour indicate reaction occurred, then read at 532 nm by spectrophotometer (Apel-PD303-Japan).

Determination of serum glucose
Glucose was determined by enzymatic reactions using (Randox) kit. It produced a violet quinoneimine color absorbed by spectrophotometer (500 nm) which was proportioned to glucose concentration

Determination of serum chloride
BioLabo (France) kit method was used to determine serum chloride by using spectrophotometer (Apel-PD303-Japab).

Determination of serum magnesium
Gindler, Heth and Khayam-Bashi method was used for determination of magnesium. The BioLabo (France) kit method was used to determine serum magnesium by using spectrophotometer (Apel-PD303-Japab).

Data analysis
The present results are expressed as means ± standard error (SE) and data analysis was performed using available statistical software (Statistical package for social science (SPSS) version 11.5). Statistical analysis was made using one-way analysis of variance (ANOVA). The comparisons among groups were done using Duncan post hoc test. P values <0.05 were considered as significant.
RESULTS

In the experiment A, bolus infusion of losartan significantly (P < 0.05) decreased serum cortisol level as compared with an ET-1 group, while bosentan non-significantly reduced cortisol level. There was no statistical difference between ET-1 and saline group (Figure 1, A). Beside that, in the experiment B, bosentan could significantly decrease cortisol level versus Ang II. Neither losartan nor Ang II changed serum cortisol significantly in comparison with Ang II and saline groups, respectively (Figure 1, B).

On the other hand, bosentan raised MDA concentration after ET-1 infusion (P < 0.05), but losartan slightly decreased it (Figure 2, A). MDA in Ang II infusion dramatically became high in comparison with saline infusion while, both losartan and bosentan non-significantly returned it to the base line levels (Figure 2, B).

Furthermore, serum glucose concentration significantly raised (P < 0.05) in losartan infusion and bosentan did that but not statistically (P > 0.05) (Table 1). While, serum chloride in both bosentan (111.2 ± 3.590) and losartan (114.1 ± 2.869) significantly increased it compared to ET-1 infusion (104.7 ± 2.990) (Table 1). Also, ET-1 infusion for one hour led to rising Mg²⁺ concentration in concomitant with saline infusion. (Table 1).

Figure 1: Serum cortisol in A, ET-1 treated rats. B, Ang II treated rats.
The different letters mean significant and the same letters mean no significant differences. The data mean ± SEM, P < 0.05 consider a significant difference according to 1-way ANOVA followed by Duncan post hoc test.

Figure 2: Serum MDA (µg/dL) in A, ET-1 treated rats. B, Ang II treated rats.
The different letters mean significant and the same letters mean no significant differences. The data mean ± SEM, P < 0.05 consider a significant difference according to 1-way ANOVA followed by Duncan post hoc test.

Table 1: Effect of ET-1 infusion on serum glucose, chloride and magnesium.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Glucose * (mg/dL)</th>
<th>Chloride * (mg/dL)</th>
<th>Magnesium* (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline</td>
<td>154.9 ± 15.00</td>
<td>97.41 ± 2.926</td>
<td>0.154 ± 0.0180</td>
</tr>
<tr>
<td></td>
<td>ET-1</td>
<td>123.2 ± 8.087</td>
<td>104.7 ± 2.990</td>
<td>0.242 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>ET-1 + Bosentan</td>
<td>185.3 ± 25.35</td>
<td>111.2 ± 3.590</td>
<td>0.264 ± 0.047</td>
</tr>
<tr>
<td></td>
<td>ET-1 + Losartan</td>
<td>212.9 ± 13.56</td>
<td>114.1 ± 2.869</td>
<td>0.227 ± 0.014</td>
</tr>
</tbody>
</table>

The different letters mean significant and the same letters mean no significant differences. The data mean ± SEM, P < 0.05 considered a significant difference according to 1-way ANOVA followed by Duncan post hoc test.

Table 2 shows that, Mg²⁺ was increased in bosentan (0.308 ± 0.040) and it was decreased in losartan (0.261 ± 0.044) as compared with Ang II (0.296 ± 0.025), but only bosentan could increase chloride (P < 0.05).
There was no statistical change in glucose concentration in experiment B.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Glucose (mg/dL)</th>
<th>Chloride * (mg/dL)</th>
<th>Magnesium * (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>154.9 ± 15.00a</td>
<td>97.41 ± 2.926a</td>
<td>0.154 ± 0.0180a</td>
</tr>
<tr>
<td>Ang II</td>
<td>161.2 ± 29.25a</td>
<td>100.9 ± 0.777ab</td>
<td>0.296 ± 0.025b</td>
</tr>
<tr>
<td>Ang II + Losartan</td>
<td>143.8 ± 11.04a</td>
<td>103.5 ± 3.120ab</td>
<td>0.308 ± 0.040b</td>
</tr>
<tr>
<td>Ang II + Bosentan</td>
<td>156.8 ± 20.64a</td>
<td>106.0 ± 2.259b</td>
<td>0.261 ± 0.044b</td>
</tr>
</tbody>
</table>

The different letters mean significant and the same letters mean no significant differences. The data mean ± SEM * P < 0.05 considered a significant difference according to 1-way ANOVA followed by Duncan post hoc test.

DISCUSSION

The present study demonstrates that both ET-1 A/B dual (bosentan) and Ang II AT1 (losartan) receptors antagonists attenuate cortisol concentration, oxidative stress and magnesium regulation, also bolus infusion of them affected chloride ion and glucose homeostasis. Losartan bolus infusion could reduce serum cortisol significantly as compared with ET-1 infusion for one hour (Figure 1, A). Additionally, bosentan markedly decreased the elevated cortisol concentration caused by Ang II infusion (Figure 1, B). The exact mechanisms by which losartan and bosentan caused cortisol reduction is not fully understood yet. However, the current result agree with (Ansurudeen et al. 2014) demonstrated that Ang II causes an increase in cortisol production. (Paramonova et al. 2010) reported that ET-1 causes proliferation of adrenocortical cells and promotes cortisol secretion. Furthermore, hypercortisolemia has related with elevated ET-1 levels (Lederbogen et al. 1999). The current data disagree with (le Mevel et al. 1999) demonstrated that intra-arterial injection of ET-1 did not markedly modify cortisol levels. Also, (Vierhapper et al. 1995) concluded that cortisol concentration was unchanged by infusion of ET-1. Experimental data for reducing cortisol levels by bolus infusion of the losartan are limited, while a study observed that Ang II modulated transcription regulatory genes of cortisol secretion and expression levels of unique enzymes of the glucocorticoid biosynthesis pathways (Rondon et al. 2014). Also, Ang II directly stimulates adrenal cortisol production through releasing nitric oxide (Gauthier et al. 2005).

Although, ET-1 slightly elevated lipid peroxidation through serum MDA level (Figure 2, A and B), while, Ang II increased it significantly as compared with the saline infusion. Interestingly, Bosentan infusion markedly increased MDA levels, whereas Losartan infusion did not change it significantly. It has been reported that the Ang II infusion (Bild et al. 2013; Dianat et al. 2014) and ET-1 infusion would increase oxidative stress and alters the balance between oxidant and antioxidant enzymes (Fiore et al. 2005). More recently (Lankhorst et al. 2014) demonstrated that activation of the ET-1 axis induces oxidative stress. However, at present there is no exact explanation for MDA elevation by bosentan administration, but a report indicated that, bosentan enhances hepatic toxicity and liver damage (Eriksson et al. 2011). Additionally, free radical production is strongly related with glucose metabolism, hence there is a report demonstrated that bosentan affects liver glycogen content and serum glucose (Said et al. 2005), however, the current data is in contrast to (Demirci et al. 2015) concluded that bosentan treatment
improves diabetes – induces liver damage via oxidative stress reduction. Besides that, ET-1 infusion did not change serum glucose (Table 1), and the result may be due to ET-1 induces glucose uptake (Wu-Wong et al. 2002) and bosentan decreases serum glucose (Said et al. 2005), also, (Strawbridge and Elmendorf 2005) concluded that ET-1 induced insulin resistance and impaired glucose transport. While, Telmisartan can improve diabetic rats and insulin resistance (Younis et al. 2012), but losartan increases serum glucose. Bolus infusion of both losartan and bosentan slightly increased serum chloride as compared with ET-1 infusion (Table 1). The possible mechanisms may be returned to inhibition of Na\(^{+}\) - K\(^{+}\) - 2Cl\(^{-}\) co-transporter and Cl\(^{-}\) / HCO\(_3\)\(^{-}\) exchanger (Dai and Zhang 2004). On the other hand, ET-1 inhibits thick ascending limb chloride flux via ET\(_B\) receptor-mediated NO release (Plato et al. 2000), and ET-1 can potently stimulate chloride secretion (Kuhn et al. 1997).

Magnesium is an important physiological intracellular ion, which has roles in cardiovascular regulation, and it relaxes vessels and hence reduces blood pressure (Finckenberg et al. 2005; Rondon et al. 2014). The present study showed that both ET-1 and Ang II infusion for one hour significantly increased serum magnesium. However, there is no previous report indicating such relation between magnesium ions and ET-1 and Ang II actions. However, many studies have been reported that magnesium ameliorates Ang II and ET-1 production (Berthon et al. 2003; Berthon et al. 2002; Ozturk et al. 2012). Although, Ang II infusion induced hypermagnesuria, and hence reduces magnesium ions (Wu and Sonnenberg 1995), both ET-1 and Ang II increased magnesium. It is believed that this due to glomerular filtration rat (GFR) reduction and no more magnesium could be excreted through the urine but the exact explanation for this result needs further confirmation. In conclusions, both losartan and bosentan could reduce cortisol levels, and bosentan rather than losartan can elevate oxidative stress. Also, Ang II infusion could raise MDA levels more than ET-1 infusion. Interestingly, both ET-1 and Ang II can markedly elevate serum magnesium levels.

REFERENCES
supplementation prevents angiotensin II-induced myocardial damage and CTGF overexpression." J Hypertens, 23(2), 375-80.

actin-dependent mechanism."

Diabetes, 54(6), 1698-705.

"Endothelin-stimulated glucose uptake: effects of intracellular Ca(2+), cAMP and glucosamine." Clin Sci, 103(48), 418S-423S.