Optical Analysis of 1300 nm GaInNAsSb/GaAs Vertical Cavity Semiconductor Optical Amplifier

  • Faten Adel Ismael Chaqmaqchee Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R. Iraq
  • Shawbo Abdulsamad Abubekr Salh Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R. Iraq
  • Mohammed Faeq Mohammed Sabri Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R. Iraq
Keywords: Vertical cavity semiconductor optical amplifier (VCSOA), distributed Bragg reflectors (DBRs), quantum wells (QWs), gain, amplifier bandwidth, mirror reflectivity

Abstract

Vertical cavity semiconductor optical amplifiers (VCSOAs) based on GaInNAsSb active region is designed to operate in reflection mode at wavelength of 1300 nm. Addition of antimony Sb to the GaInNAs has dramatically improve the performance of VCSOAs, where the wavelength shifts to longer wavelength. This study is aimed to design GaInNAsSb/GaAs quantum wells (QWs) enclosed between various periods of front and 25-periods of back of AlGaAs/GaAs distributed Bragg mirrors (DBRs) by using MATLAB. GaInNAsSb can be grown and lattice matched to GaAs with a very small band gap and it can be grown monolithically on high quality GaAs/AlGaAs distributed Bragg reflector. Peak reflection gain at around of 53.2 dB at single pass gain of 1.076 is observed. In addition, amplifier bandwidth at various front back mirrors reflectivities is simulated to achieve high gain and wide optical bandwidth at low reflectivity of front mirrors.   

References

Bjorlin, E. S. 2002. Long-wavelength vertical-cavity semiconductor optical amplifiers, In Semiconductor Lasers and Optical Amplifiers for Lightwave Communication Systems, 35-47. International Society for Optics and Photonics.
Bjorlin, E.S., and Bowers, J.E. 2002. Noise figure of vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 38 (1), 61-66.
Bjorlin, E.S., Kimura, T., and Bowers, J.E. 2003. Carrier-confined vertical-cavity semiconductor optical amplifiers for higher gain and efficiency, IEEE journal of selected topics in quantum electronics, 9 (5), 1374-85.
Bjorlin, E.S., Riou. B, Abraham, P., Piprek, J., Chiu Y-Y, Black, K. A., Keating, A. and Bowers, J.E. 2001. Long wavelength vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 37 (2), 274-81.
Chaqmaqchee, F. A. 2016. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems, ARO-The Scientific Journal of Koya University, 4 (1), 8-12.
Chaqmaqchee, F.A.I. and Balkan, N. Gain studies of 1.3-mum dilute nitride HELLISH-VCSOA for optical communications. Nanoscale Res Lett. 2012, 7 (1), 526-529.
Chaqmaqchee, F.A.I. and Balkan, N. Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm. Nanoscale Res Lett. 2014, 9 (1), 1-5.
Cole, G.D., Bjorlin, E.S., Chen, Q., Chan, C.-Y., Wu, S., Wang, C.S., MacDonald, N.C. and Bowers, J.E. 2005. MEMS-tunable vertical-cavity SOAs, IEEE journal of quantum electronics, 41 (3), 390-407.
Gambin, V., Ha, W., Wistey, M., Yuen, H., Bank, S.R, Kim, S. M. and Harris Jr, J.S. 2002. GaInNAsSb for 1.3-1.6 m long wavelength lasers grown by molecular beam epitaxy, IEEE J. Sel. Topics Quantum Electron, 8 (4), 795-800.
Harris Jr, J.S. 2005. The opportunities, successes and challenges for GaInNAsSb, Journal of crystal growth, 278 (1), 3-17.
Hurtado, A., Gonzalez-Marcos, A.P. and Martin-Pereda, J.A. 2005. Low-power vertical cavity NAND gate, Proc. SPIE 5840, Photonic Materials, Device and Applications, 5840, 373-81.
Karim, A., Bjorlin, S., Piprek, J., and Bowers, J.E. 2000. Long-wavelength vertical-cavity lasers and amplifiers, IEEE journal of selected topics in quantum electronics, 6 (6), 1244-53.
Karim, M.R., Rahman, M.A., Akhtar, J. and Reja, M. I. Design and performance analysis of GaInNAsSb/GaAs MQW VCSEL operating at 1550 nm. 2017. IEEE, 3rd International Conference on Electrical Information and Communication Technology (EICT).
Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M.C, Nakahara, K., Yazawa, Y., Okai M. and Uomi, K. 1997. GaInNAs: a novel material for long-wavelength semiconductor lasers, IEEE journal of selected topics in quantum electronics, 3 (3), 719-30.
Koyama, F., Kubota, S., and Iga, K. 1991. GaAlAs/GaAs active filter based on vertical cavity surface emitting laser, Electronics Letters, 27 (12), 1093-95.
Laurand, N., Calvez, S., Dawson, M.D., Bryce, A.C. and Jouhti, T. 2005. Performance comparison of GaInNAs vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 41 (5), 642-49.
Pankove, J.I., Miller, E.A. and Berkeyheiser, J.E. 1972. GaN blue light-emitting diodes, Journal of Luminescence, 5 (1), 84-86.
Piprek, J., Björlin, E.S. and Bowers, J.E. 2001. Optical gain-bandwidth product of vertical-cavity laser amplifiers, Electronics Letters, 37 (5), 298-299.
Piprek, J., Bjorlin, S. and Bowers, J. E. 2001. Design and analysis of vertical-cavity semiconductor optical amplifiers, IEEE journal of quantum electronics, 37 (1), 127-134.
Soda, H., Iga, K.-i., Kitahara, C. and Suematsu, Y. 1979. GaInAsP/InP surface emitting injection lasers, Japanese Journal of Applied Physics, 18 (12), 2329.
Song, D., Gauss, V., Zhang, H., Gross, M., Wen, P., and Esener, S. 2007. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers, Optics letters, 32 (20), 2969-2971.
Spiewak, P., Gebski, M., Haghighi, N., Rosales, R., Komar, P., Walczak, J., Wieckowska, M, Sarzala, R.P., Lott, J.A. and Wasiak, M. 2018. Impact of the top DBR in GaAs-based VCSELs on the threshold current and the cavity photon lifetime. SPIE Proceedings, 10552.
Tombling, C., Saitoh, T. and Mukai, T. 1994. Performance predictions for vertical-cavity semiconductor laser amplifiers, IEEE journal of quantum electronics, 30 (11), 2491-99.
Yang, X., Jurkovic, M.J., Heroux, J.B. and Wang, W.I. 1999. Molecular beam epitaxial growth of InGaAsN: Sb/GaAs quantum wells for long-wavelength semiconductor lasers, Applied Physics Letters, 75 (2), 178-180.
Yuen, H.B., Bank, S.R., Bae, H., Wistey, M.A, and Harris Jr, J.S. 2006. The role of antimony on properties of widely varying GaInNAsSb compositions, Journal of Applied Physics, 99 (9), 093504.
Published
2020-04-22
How to Cite
Chaqmaqchee, F., Abubekr Salh, S. and Mohammed Sabri, M. (2020) “Optical Analysis of 1300 nm GaInNAsSb/GaAs Vertical Cavity Semiconductor Optical Amplifier”, Zanco Journal of Pure and Applied Sciences, 32(2), pp. 87-92. doi: 10.21271/ZJPAS.32.2.9.
Section
Mathematics ,Physics and Engineering Researches