Performance Characteristics of Conventional Vertical Cavity Surface Emitting Lasers VCSELs at 1300 nm

  • Faten Adel Ismael Chaqmaqchee Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R. Iraq
Keywords: Commercial VCSEL, Room temperature,Amplification,Thresholds current, Tunable laser power.

Abstract

Vertical-cavity surface emitting lasers (VCSELs) are interesting devices because of their low-cost manufacturing and testing methods, circularly shaped output beam for high coupling efficiency and suited for use in fiber-optic networks and as optical interconnects. In this paper, experimental results of output light-current-voltage (LIV), optically pumped VCSELs operating at 1320 nm wavelength are presented. The commercial device is biased just below threshold current of 0.84 mA under pump power of 1 mW. An amplified gain at around 20 dB is obtained. In addition, the influence of temperature on the performance of the device is studied.

 

References

REFERENCES
CALVES, S. & LAURAND, N. 2006. Vertical Cavity Semiconductor Optical Amplifiers Based on Dilute Nitrides Dilute nitride: Phys. and Applications. Research Signpost.
CHAQMAQCHEE, F. A. I. 2016. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems. ARO Journal 10076, 4, 8-12.
CHAQMAQCHEE, F. A. I. & BALKAN, N. 2014. Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm. Nanoscale Res Lett, 9, 1-5.
COOKE, M. 2011. Short and long reach of new VCSEL applications. Semiconductor today compounds and advanced silicon.
JEWELL, J., GRAHAM, L., CROM, M., MARANOWSKI, K., SMITH, J., FANNING, T.R. & SCHNOES, M. 2008. Commercial GaInNAs VCSELs grown by MBE. Physica Status Solidi (c), 5, 2951-2956.
HAGHIGHI, N., ROSALES, R., LARISCH, G., GEBSKI, M., FRASUNKIEWICZ, L., ZYSZANOWSKI, T. & LOTT, J.A. 2018. Simplicity VCSELs. Proc. SPIE, 10552.
HUFFAKER, D. L., GRAHAM, L. A., DENG, H. & DEPPE, D. G. 1996. Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors. IEEE Photo Technol Lett, 8, 974-976.
JAGER, R., RIEDL, M. C. 2011. MBE growth of VCSELs for high volume applications. Journal of Crystal Growth, 323, 434-437.
JAYARAMAN, V., GOODNOUGH, T. J., BEAM, T. L., AHEDO, F. M. & MAURICE, R. A. 2000. Continuous-wave operation of single-transverse-mode 1310-nm VCSELs up to 115/spl deg/C. IEEE Photo. Technol Lett , 12, 1595-1597.
KIM, B., YOON, M., KIM, S., SON, J., KIM, B., JHIN, J. & BYUN, D. 2004. The influence of aluminium composition of AlxGa1xAs in distributed Bragg reflector on surface morphology. Phys Stat Soli (b), 241, 2726-2729.
KOJIMA, K., MORGAN, R. A., MULLALY, T., GUTH, G. D., FOCHT, M. W., LEIBENGUTH, R. E., ASOM, M. T. 1993. Reduction of p-doped mirror electrical resistance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta doping. Electronics Letters, 29, 1771-1772.
KONDOW, M., UOMI, K., NIWA, A., KITATANI, T., WATAHIKI, S. & YAZAWA, Y. 1996. GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Japan Journal Appl Phys, 35, 1273-5.
LEE, S.G., FORMAN, C.A., LEE, C., KEARNS, J., YOUNG, E.C. & LEONARD, J.T. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition. 2018. Applied Physics Express, 11, 062703(1)- 062703(6)
LI, H., WOLF, P., JIA, X., LOTT. J. A. & BIMBERG, D. Thermal analysis of high-bandwidth and energy-efficient 980nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset. 2017. Applied Physics Letters. 111, 243508(1)- 243508(3)
PIPREK, J., AKULOVA, Y. A., BABIC, D. I., COLDREN, L. A. & BOWERS, J. E. 1998. Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset. App Phys Lett, 72, 1814-1816.
PIPREK, J., BJÖRLIN, S. & BOWERS, J. E. 2001. Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 37, 127-133.
SATO, S. & SATOH, S. 1999. 1.21 µm Continuous Wave Operation of Highly Strained GaInAs Quantum Well Lasers on GaAs Substrates. Japan J Appl Phys. 38.
SPIEWAK, P., GEBSKI, M., HAGHIGHI, N., ROSALES, R., KOMAR, P., WALCZAK, J., WIECKOWSKA, M, SARZALA, R.P., LOTT, J.A. &WASIAK, M. 2018. Impact of the top DBR in GaAs-based VCSELs on the threshold current and the cavity photon lifetime. SPIE Proceedings, 10552.
Published
2019-05-12
How to Cite
Ismael Chaqmaqchee, F. (2019) “Performance Characteristics of Conventional Vertical Cavity Surface Emitting Lasers VCSELs at 1300 nm”, Zanco Journal of Pure and Applied Sciences, 31(2), pp. 14-18. doi: 10.21271/zjpas.31.s2.3.