Performance Characteristics of Conventional Vertical Cavity Surface Emitting Lasers VCSELs at 1300 nm

  • Faten Adel Ismael Chaqmaqchee Department of Physics, Faculty of Science and Health, Koya University, University Park, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region-F.R. Iraq
Keywords: Commercial VCSEL, Room temperature,Amplification,Thresholds current, Tunable laser power.


Vertical-cavity surface emitting lasers (VCSELs) are interesting devices because of their low-cost manufacturing and testing methods, circularly shaped output beam for high coupling efficiency and suited for use in fiber-optic networks and as optical interconnects. In this paper, experimental results of output light-current-voltage (LIV), optically pumped VCSELs operating at 1320 nm wavelength are presented. The commercial device is biased just below threshold current of 0.84 mA under pump power of 1 mW. An amplified gain at around 20 dB is obtained. In addition, the influence of temperature on the performance of the device is studied.



CALVES, S. & LAURAND, N. 2006. Vertical Cavity Semiconductor Optical Amplifiers Based on Dilute Nitrides Dilute nitride: Phys. and Applications. Research Signpost.
CHAQMAQCHEE, F. A. I. 2016. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems. ARO Journal 10076, 4, 8-12.
CHAQMAQCHEE, F. A. I. & BALKAN, N. 2014. Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm. Nanoscale Res Lett, 9, 1-5.
COOKE, M. 2011. Short and long reach of new VCSEL applications. Semiconductor today compounds and advanced silicon.
JEWELL, J., GRAHAM, L., CROM, M., MARANOWSKI, K., SMITH, J., FANNING, T.R. & SCHNOES, M. 2008. Commercial GaInNAs VCSELs grown by MBE. Physica Status Solidi (c), 5, 2951-2956.
HUFFAKER, D. L., GRAHAM, L. A., DENG, H. & DEPPE, D. G. 1996. Sub-40 μA continuous-wave lasing in an oxidized vertical-cavity surface-emitting laser with dielectric mirrors. IEEE Photo Technol Lett, 8, 974-976.
JAGER, R., RIEDL, M. C. 2011. MBE growth of VCSELs for high volume applications. Journal of Crystal Growth, 323, 434-437.
JAYARAMAN, V., GOODNOUGH, T. J., BEAM, T. L., AHEDO, F. M. & MAURICE, R. A. 2000. Continuous-wave operation of single-transverse-mode 1310-nm VCSELs up to 115/spl deg/C. IEEE Photo. Technol Lett , 12, 1595-1597.
KIM, B., YOON, M., KIM, S., SON, J., KIM, B., JHIN, J. & BYUN, D. 2004. The influence of aluminium composition of AlxGa1xAs in distributed Bragg reflector on surface morphology. Phys Stat Soli (b), 241, 2726-2729.
KOJIMA, K., MORGAN, R. A., MULLALY, T., GUTH, G. D., FOCHT, M. W., LEIBENGUTH, R. E., ASOM, M. T. 1993. Reduction of p-doped mirror electrical resistance of GaAs/AlGaAs vertical-cavity surface-emitting lasers by delta doping. Electronics Letters, 29, 1771-1772.
KONDOW, M., UOMI, K., NIWA, A., KITATANI, T., WATAHIKI, S. & YAZAWA, Y. 1996. GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance. Japan Journal Appl Phys, 35, 1273-5.
LEE, S.G., FORMAN, C.A., LEE, C., KEARNS, J., YOUNG, E.C. & LEONARD, J.T. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition. 2018. Applied Physics Express, 11, 062703(1)- 062703(6)
LI, H., WOLF, P., JIA, X., LOTT. J. A. & BIMBERG, D. Thermal analysis of high-bandwidth and energy-efficient 980nm VCSELs with optimized quantum well gain peak-to-cavity resonance wavelength offset. 2017. Applied Physics Letters. 111, 243508(1)- 243508(3)
PIPREK, J., AKULOVA, Y. A., BABIC, D. I., COLDREN, L. A. & BOWERS, J. E. 1998. Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset. App Phys Lett, 72, 1814-1816.
PIPREK, J., BJÖRLIN, S. & BOWERS, J. E. 2001. Design and analysis of vertical-cavity semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 37, 127-133.
SATO, S. & SATOH, S. 1999. 1.21 µm Continuous Wave Operation of Highly Strained GaInAs Quantum Well Lasers on GaAs Substrates. Japan J Appl Phys. 38.
SPIEWAK, P., GEBSKI, M., HAGHIGHI, N., ROSALES, R., KOMAR, P., WALCZAK, J., WIECKOWSKA, M, SARZALA, R.P., LOTT, J.A. &WASIAK, M. 2018. Impact of the top DBR in GaAs-based VCSELs on the threshold current and the cavity photon lifetime. SPIE Proceedings, 10552.
How to Cite
Ismael Chaqmaqchee, F. (2019) “Performance Characteristics of Conventional Vertical Cavity Surface Emitting Lasers VCSELs at 1300 nm”, Zanco Journal of Pure and Applied Sciences, 31(2), pp. 14-18. doi: 10.21271/zjpas.31.s2.3.