Polymorphism of miRNA and its Impact on IVF Failure

  • Rande Khasro Dizay Department of Biology, College of Sciences, Salahaddin University-Erbil, Kurdistan Region, Iraq.
  • Suhad Asaad Mustafa Scientific Research Center, Salhaddin Univesity-Erbil, Erbil, Kurdistan Region, Iraq.
Keywords: IVF; miRNA; Infertility; mir-125a; SNP.


In vitro fertilization (IVF) failure is not only the cause of despair among couples and individuals undergoing the treatment, it´s also been contributing to the impediment of assistive reproductive technologies (ART) development, miRNAs have been linked to significant events in the reproduction course and the identification of miRNA polymorphisms may provide a good lead for the potential of diagnosis and treatment of unidentified IVF failure causes, the aim of the present study was to explore the association between the miRNA polymorphism (mir-125a T>Crs12975333) and IVF failure. Our case-control study consisted of 100 Kurdish women in total, 50 belong to the case group that underwent IVF failure and the other 50 belong to the control group who have had at least two successful pregnancies and no history of pregnancy loss, we used tetra amplification refractory mutation system to identify the polymorphisms within the groups, the TT genotype  was found more frequently in IVF failure patients when compared to the healthy women (OR: 5.268, CI: 1.07-25.7, P=0.025) and T allele was more present in the case group (OR:1.9, CI:1.06-3.41, P=0.028). The difference in genotype and allele frequencies of mir-125a of the two groups may indicate that it has an effect on the target mRNAs and alter the implantation of embryo during IVF cycles.


AGARWAL, V., BELL, G. W., NAM, J. W. & BARTEL, D. P. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4.
ANDREI, D., NAGY, R. A., VAN MONTFOORT, A., TIETGE, U., TERPSTRA, M., KOK, K., VAN DEN BERG, A., HOEK, A., KLUIVER, J. & DONKER, R. 2019. Differential miRNA Expression Profiles in Cumulus and Mural Granulosa Cells from Human Pre-ovulatory Follicles. Microrna, 8, 61-67.
BITETTI, A., MALLORY, A. C., GOLINI, E., CARRIERI, C., CARREÑO GUTIÉRREZ, H., PERLAS, E., PÉREZ-RICO, Y. A., TOCCHINI-VALENTINI, G. P., ENRIGHT, A. J., NORTON, W. H. J., MANDILLO, S., O’CARROLL, D. & SHKUMATAVA, A. 2018. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nature Structural & Molecular Biology, 25, 244-251.
BORGES, E., JR., SETTI, A. S., BRAGA, D. P. A. F., GERALDO, M. V., FIGUEIRA, R. D. C. S. & IACONELLI, A., JR. miR-142-3p as a biomarker of blastocyst implantation failure - A pilot study. JBRA assisted reproduction, 20, 200-205.
BRENNECKE, J., STARK, A., RUSSELL, R. B. & COHEN, S. M. 2005. Principles of MicroRNA–Target Recognition. PLOS Biology, 3, e85.
CHAKRABARTY, A., TRANGUCH, S., DAIKOKU, T., JENSEN, K., FURNEAUX, H. & DEY, S. K. 2007. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A, 104, 15144-9.
CHO, S. H., CHUNG, K. W., KIM, J. O., JANG, H., YOO, J. K., CHOI, Y., KO, J. J., KIM, J. H., NISHI, Y., YANASE, T., LEE, W. S. & KIM, N. K. 2016. Association of miR-146aC>G, miR-149C>T, miR-196a2T>C, and miR-499A>G polymorphisms with risk of recurrent implantation failure in Korean women. Eur J Obstet Gynecol Reprod Biol, 202, 14-9.
COLLINS, A. & KE, X. 2012. Primer1: primer design web service for tetra-primer ARMS-PCR. The Open Bioinformatics Journal, 6.
DENTILLO, D. B., SOUZA, F. R., MEOLA, J., VIEIRA, G. S., YAZLLE, M. E., GOULART, L. R. & MARTELLI, L. 2007. No evidence of association of MUC-1 genetic polymorphism with embryo implantation failure. Braz J Med Biol Res, 40, 793-7.
GU, Y., MENG, J., ZUO, C., WANG, S., LI, H., ZHAO, S., HUANG, T., WANG, X. & YAN, J. 2019. Downregulation of MicroRNA-125a in Placenta Accreta Spectrum Disorders Contributes Antiapoptosis of Implantation Site Intermediate Trophoblasts by Targeting MCL1. Reproductive Sciences, 1933719119828040.
HOSSEINI, M. K., GUNEL, T., GUMUSOGLU, E., BENIAN, A. & AYDINLI, K. 2018. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep, 17, 4941-4952.
HU, Y., HUO, Z.-H., LIU, C.-M., LIU, S.-G., ZHANG, N., YIN, K.-L., QI, L., MA, X. & XIA, H.-F. 2014. Functional study of one nucleotide mutation in pri-miR-125a coding region which related to recurrent pregnancy loss. PloS one, 9, e114781-e114781.
HU, Y., LIU, C.-M., QI, L., HE, T.-Z., SHI-GUO, L., HAO, C.-J., CUI, Y., ZHANG, N., XIA, H.-F. & MA, X. 2011. Two common SNPs in pri-miR-125a alter the mature miRNA expression and associate with recurrent pregnancy loss in a Han-Chinese population. RNA biology, 8, 861-872.
KIM, J., LEE, J. & JUN, J. H. 2019. Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos in mice. Reprod Fertil Dev, 31, 645-657.
KIM, K.-H., SEO, Y.-M., KIM, E.-Y., LEE, S.-Y., KWON, J., KO, J.-J. & LEE, K.-A. 2016. The miR-125 family is an important regulator of the expression and maintenance of maternal effect genes during preimplantational embryo development. Open biology, 6, 160181.
KOVACS, P. 2014. Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol, 12, 124.
KROLICZEWSKI, J., SOBOLEWSKA, A., LEJNOWSKI, D., COLLAWN, J. F. & BARTOSZEWSKI, R. 2018. microRNA single polynucleotide polymorphism influences on microRNA biogenesis and mRNA target specificity. Gene, 640, 66-72.
KROPP, J. & KHATIB, H. 2015. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci, 98, 6552-63.
LATINI, A., CICCACCI, C., NOVELLI, G. & BORGIANI, P. 2017. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility. Immunologic research, 65, 811-827.
LEE, H. A., AHN, E. H., JANG, H. G., KIM, J. O., KIM, J. H., LEE, Y. B., LEE, W. S. & KIM, N. K. 2019. Association Between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T Polymorphisms and Risk of Recurrent Implantation Failure. Reprod Sci, 26, 469-475.
LEE, R. C., FEINBAUM, R. L. & AMBROS, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54.
LI, D. & LI, J. 2016. Association of miR-34a-3p/5p, miR-141-3p/5p, and miR-24 in decidual natural killer cells with unexplained recurrent spontaneous abortion. Medical science monitor: international medical journal of experimental and clinical research, 22, 922.
LI, R., QIAO, J., WANG, L., LI, L., ZHEN, X., LIU, P. & ZHENG, X. 2011. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reproductive biology and endocrinology : RB&E, 9, 29-29.
NAKAMURA, K., SAWADA, K., YOSHIMURA, A., KINOSE, Y., NAKATSUKA, E. & KIMURA, T. 2016. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Molecular cancer, 15, 48-48.
NOTHNICK, W. B., AL-HENDY, A. & LUE, J. R. 2015. Circulating Micro-RNAs as Diagnostic Biomarkers for Endometriosis: Privation and Promise. Journal of minimally invasive gynecology, 22, 719-726.
O'BRIEN, J., HAYDER, H., ZAYED, Y. & PENG, C. 2018. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9.
O’FLYNN, N. 2014. Assessment and treatment for people with fertility problems: NICE guideline. Br J Gen Pract, 64, 50-51.
PETERLONGO, P., CALECA, L., CATTANEO, E., RAVAGNANI, F., BIANCHI, T., GALASTRI, L., BERNARD, L., FICARAZZI, F., DALL'OLIO, V. & MARME, F. 2011. The rs12975333 variant in the miR-125a and breast cancer risk in Germany, Italy, Australia and Spain. Journal of medical genetics, 48, 703-704.
POGRIBNY, I. P. 2018. MicroRNAs as biomarkers for clinical studies. Exp Biol Med (Maywood), 243, 283-290.
POTENZA, N. & RUSSO, A. 2013. Biogenesis, evolution and functional targets of microRNA-125a. Molecular genetics and genomics, 288, 381-389.
SHI, C., SHEN, H., FAN, L.-J., GUAN, J., ZHENG, X.-B., CHEN, X., LIANG, R., ZHANG, X.-W., CUI, Q.-H., SUN, K.-K., ZHAO, Z.-R. & HAN, H.-J. 2017. Endometrial MicroRNA Signature during the Window of Implantation Changed in Patients with Repeated Implantation Failure. Chinese medical journal, 130, 566-573.
SINGH, D. K., ZHANG, W., XU, Y., YIN, J., GU, H. & JIANG, P. 2017. Hsa-miR-34b/c rs4938723 T> C, pri-miR-124-1 rs531564 C> G, pre-miR-125a rs12975333 G> T and hsa-miR-423 rs6505162 C> A polymorphisms and the risk of gastric cardia adenocarcinoma. Int J Clin Exp Med, 10, 14919-14926.
SOOD, P., KREK, A., ZAVOLAN, M., MACINO, G. & RAJEWSKY, N. 2006. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A, 103, 2746-51.
SØRENSEN, A., WISSING, M., SALÖ, S., ENGLUND, A. & DALGAARD, L. 2014. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes, 5, 684-708.
STOWE, H. M., CURRY, E., CALCATERA, S. M., KRISHER, R. L., PACZKOWSKI, M. & PRATT, S. L. 2012. Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on MicroRNA expression in porcine embryos. Gene, 501, 198-205.
WANG, C., LI, D., ZHANG, S., XING, Y., GAO, Y. & WU, J. 2016. MicroRNA-125a-5p induces mouse granulosa cell apoptosis by targeting signal transducer and activator of transcription 3. Menopause, 23, 100-107.
WANG, W. & LUO, Y.-P. 2015. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. Journal of Zhejiang University. Science. B, 16, 18-31.
ZHANG, H., JIANG, X., ZHANG, Y., XU, B., HUA, J., MA, T., ZHENG, W., SUN, R., SHEN, W., COOKE, H. J., HAO, Q., QIAO, J. & SHI, Q. 2014. microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction, 148, 43-54.
How to Cite
Dizay, R. and Mustafa, S. (2019) “Polymorphism of miRNA and its Impact on IVF Failure”, Zanco Journal of Pure and Applied Sciences, 31(6), pp. 84-91. doi: 10.21271/zjpas.31.6.9.
Biology and Medical Researches