the Free vibration analysis of multi-cracked nanobeam using nonlocal elasticity theory

  • Nazhad Ahmad hussein Department of Mechanical , College of Engineering, Salahaddin University-Erbil, Erbil, Iraq
  • Hardi A. M. Rasul Department of Mechanical, College of Engineering, Salahaddin University-Erbil, Erbil, Iraq
  • Sardar S. Abdullah 1 Department of Mechanical, College of Engineering, Salahaddin University-Erbil, Erbil, Iraq 2 School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
Keywords: Free vibration, Multi-cracked nanobeams, Euler-Bernoulli, Nonlocal elasticity theory

Abstract

The aim of this paper is to study the free lateral vibration of multi-cracked nanobeams, and consequently finding the natural frequencies of the cracked nanobeams using two methods. The model of the beam is Euler-Bernoulli in which shear effect has been neglected. Crack is assumed to divide the beam into two segments and these segments are connected to each other by a linear spring and a rotational spring. The crack induces more flexibility to the beam and reduces the stiffness of the beam and consequently influences the dynamic response and the natural frequencies of the beam. Cases of double-cracked and triple-cracked nanobeams are studied. It is observed that when the number of the cracks are increased, the natural frequencies will be decreased. Nonlocal elasticity theory is exposed to the equation of motion. Nonlocal parameter and number of the cracks affect the natural frequencies of the nanobeams. For the case of cantilever, the results are slightly different in contrast to simply supported and clamped-clamped cases. It has been shown that some frequency modes remain constant when the crack severity increases, because of the location of the crack which is a node for a certain mode of vibration.

References

References

Adams, R., Cawley, P., Pye, C., & Stone, B. (1978). A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 20(2), 93-100. doi:https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
Akbaş, Ş. D. (2017). Forced vibration analysis of functionally graded nanobeams. International Journal of Applied Mechanics, 9(07), 1750100. doi:http://dx.doi.org/10.1142/S1758825117501009
Ebrahimi, F., & Mahmoodi, F. (2018). Vibration analysis of carbon nanotubes with multiple cracks in thermal environment. ADVANCES IN NANO RESEARCH, 6(1), 57-80. doi: https://doi.org/10.12989/anr.2018.6.1.057
Ekinci, K., & Roukes, M. (2005). Nanoelectromechanical systems. Review of scientific instruments, 76(6), 061101. doi:https://doi.org/10.1063/1.1927327
Eringen, A. C. (1972). Nonlocal polar elastic continua. International journal of engineering science, 10(1), 1-16. doi:https://doi.org/10.1016/0020-7225(72)90070-5
Eringen, A. C. (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, 54(9), 4703-4710. doi:https://doi.org/10.1063/1.332803
Eringen, A. C. (1992). Vistas of nonlocal continuum physics. International journal of engineering science, 30(10), 1551-1565. doi:https://doi.org/10.1016/0020-7225(92)90165-D
Eringen, A. C. (2002). Nonlocal continuum field theories: Springer Science & Business Media.
Eringen, A. C., & Edelen, D. (1972). On nonlocal elasticity. International journal of engineering science, 10(3), 233-248. doi:https://doi.org/10.1016/0020-7225(72)90039-0
Freund, L., & Herrmann, G. (1976). Dynamic fracture of a beam or plate in plane bending. Journal of Applied Mechanics, 43(1), 112-116. doi:https://doi.org/10.1115/1.3423760
Kröner, E. (1967). Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures, 3(5), 731-742. doi:https://doi.org/10.1016/0020-7683(67)90049-2
Lavrik, N. V., Sepaniak, M. J., & Datskos, P. G. (2004). Cantilever transducers as a platform for chemical and biological sensors. Review of scientific instruments, 75(7), 2229. doi:https://doi.org/10.1063/1.1763252
Loghmani, M., & Yazdi, M. R. H. (2018). An analytical method for free vibration of multi cracked and stepped nonlocal nanobeams based on wave approach. Results in Physics, 11, 166-181. doi:https://doi.org/10.1016/j.rinp.2018.08.046
Loya, J., López-Puente, J., Zaera, R., & Fernández-Sáez, J. (2009). Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of applied physics, 105(4), 044309. doi:https://doi.org/10.1063/1.3068370
Loya, J., Rubio, L., & Fernández-Sáez, J. (2006). Natural frequencies for bending vibrations of Timoshenko cracked beams. Journal of Sound and Vibration, 290(3-5), 640-653. doi:https://doi.org/10.1016/j.jsv.2005.04.005
Lu, P., Lee, H., Lu, C., & Zhang, P. (2006). Dynamic properties of flexural beams using a nonlocal elasticity model. Journal of applied physics, 99(7), 073510. doi:https://doi.org/10.1063/1.2189213
Peddieson, J., Buchanan, G. R., & McNitt, R. P. (2003). Application of nonlocal continuum models to nanotechnology. International journal of engineering science, 41(3-5), 305-312. doi:https://doi.org/10.1016/S0020-7225(02)00210-0
Reddy, J. (2007). Nonlocal theories for bending, buckling and vibration of beams. International journal of engineering science, 45(2-8), 288-307. doi:https://doi.org/10.1016/j.ijengsci.2007.04.004
Reddy, J., & Pang, S. (2008). Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of applied physics, 103(2), 023511. doi:https://doi.org/10.1063/1.2833431
Roostai, H., & Haghpanahi, M. (2014). Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Applied Mathematical Modelling, 38(3), 1159-1169. doi:https://doi.org/10.1016/j.apm.2013.08.011
Soltanpour, M., Ghadiri, M., Yazdi, A., & Safi, M. (2017). Free transverse vibration analysis of size dependent Timoshenko FG cracked nanobeams resting on elastic medium. Microsystem Technologies, 23(6), 1813-1830. doi:https://doi.org/10.1007/s00542-016-2983-3
Sudak, L. (2003). Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. Journal of applied physics, 94(11), 7281-7287. doi:https://doi.org/10.1063/1.1625437
Sun, C., & Zhang, H. (2003). Size-dependent elastic moduli of platelike nanomaterials. Journal of applied physics, 93(2), 1212-1218. doi:https://doi.org/10.1063/1.1530365
Torabi, K., & Dastgerdi, J. N. (2012). An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films, 520(21), 6595-6602. doi:https://doi.org/10.1016/j.tsf.2012.06.063
Wang, C., Zhang, Y., Ramesh, S. S., & Kitipornchai, S. (2006). Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics, 39(17), 3904. doi:https://doi.org/10.1088/0022-3727/39/17/029
Wang, L., & Hu, H. (2005). Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 71(19), 195412. doi:https://doi.org/10.1103/PhysRevB.71.195412
Wang, Q. (2005). Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of applied physics, 98(12), 124301. doi:https://doi.org/10.1063/1.2141648
Wang, Q., & Varadan, V. (2006). Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Materials and Structures, 15(2), 659. doi:https://doi.org/10.1088/0964-1726/15/2/050
Wang, Q., Zhou, G., & Lin, K. (2006). Scale effect on wave propagation of double-walled carbon nanotubes. International Journal of Solids and Structures, 43(20), 6071-6084. doi:https://doi.org/10.1016/j.ijsolstr.2005.11.005
Zhang, H., & Sun, C. (2004). Nanoplate model for platelike nanomaterials. AIAA journal, 42(10), 2002-2009. doi:https://doi.org/10.2514/1.5282
Zhang, Y., Liu, G., & Xie, X. (2005). Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Physical Review B, 71(19), 195404. doi:https://doi.org/10.1103/PhysRevB.71.195404
Published
2020-04-22
How to Cite
hussein, N., A. M. Rasul, H. and S. Abdullah, S. (2020) “the Free vibration analysis of multi-cracked nanobeam using nonlocal elasticity theory”, Zanco Journal of Pure and Applied Sciences, 32(2), pp. 39-54. doi: 10.21271/ZJPAS.32.2.5.
Section
Mathematics ,Physics and Engineering Researches