Solving of the Boltzmann transport equation using two - term approximation for pure electronegative gases (SF6, CCl2F2)

  • Mohammad M. Othman Department of Physics, College of Education, Salahaddin University- Erbil, Kurdistan Region, Iraq.
  • Sherzad A. Taha Department of Physics, College of Education, Salahaddin University- Erbil, Kurdistan Region, Iraq.
  • Idrees H. Sailh2 Tishk University,Erbil, Kurdistan Region, Iraq.
Keywords: Plasma, Boltzmann equation, Transport parameters, Electron kinetics, Discharge and high voltage.

Abstract

   The Boltzmann transport equation is solved by using two-term approximation for pure electronegative gases (SF6, CCl2F2). This method used to calculate the electron energy distribution function (EEDF) and electron swarm parameters in the range of E/N varying from 100 Td to 1000 Td (1 Td=10-17 V.cm2). Electron swarm parameters have been calculated as a function of E/N namely:  drift velocity, mean electron energy, characteristic energy, diffusion coefficients, mobility, and attachment and ionization coefficients also effective ionization coefficient. The results have shown that the calculated swarm parameters were in good agreements with those obtained by experiment and theoretical (Three-term and Monte Carlo Simulation) methods. A set of elastic and inelastic cross-sections have been collected for each gas such that the computed and experimental values gave good agreement for each swarm parameter over the entire E/N range

References

Al-Amin, S. and Lucas, J. (1988). Electron swarms in mixtures of metal vapour and argon gas. Journal of Physics D: Applied Physics, 21(8), pp.1261-1270.
Aschwanden, T. (1985). Die ermittlung physikalischer entladungsparameter in isoliergasen und isoliergasgemischen mit einer verbesserten swarm-methode. Ph.D. ETH, Zurich, Switzerland.
Basurto E., Hernández-Ávila J.L., de Urquijo J. (2004) Recent Measurements of Electron Swarm Coefficients in the Mixtures of SF6 with Halocarbon and Rare Gases. In: Christophorou L.G., Olthoff J.K., Vassiliou P. (eds) Gaseous Dielectrics X. Springer, Boston, MA
Benhenni, M., de Urquijo, J., Yousfi, M., Hernandez-Ávila, J., Merbahi, N., Hinojosa, G. and Eichwald, O. (2005). Measured and calculatedSF6−collision and swarm ion transport data inSF6-Ar andSF6-Xe mixtures. Physical Review E, 71(3), pp.36405 (10).
Christophorou, L. (1984). Electron-molecule interactions and their applications. Orlando: Acad. Press, pp.318-342.
Christophorou, L. and Olthoff, J. (2000). Electron Interactions With SF6. Journal of Physical and Chemical Reference Data, 29(3), pp.267-330.
Christophorou, L. and Olthoff, J. (2004). Fundamental Electron Interactions with Plasma Processing Gases. Boston, MA: Springer US.
Christophorou, L. and Pace, M. (1984). Gaseous dielectrics IV. New York: Pergamon Press, p.24.
Chutjian, A. (1981). Experimental SF6−/SF6andCl−/CFCl3Electron-Attachment Cross Sections in the Energy Range 0-200 meV. Physical Review Letters, 46(23), pp.1511-1514.
Chutjian, A. and Alajajian, S. (1985). s-wave threshold in electron attachment: Observations and cross sections inCCl4andSF6at ultralow electron energies. Physical Review A, 31(5), pp.2885-2892.
Dahl, D. (2013). Measurements and evaluation of electron transport in electronegative gas mixtures. Ph.D. ETH ZURICH.
Devins, J. (1980). Replacement Gases for SF6. IEEE Transactions on Electrical Insulation, EI-15(2), pp.81-86.
Frost, L. and Phelps, A. (1964). Momentum-Transfer Cross Sections for Slow Electrons in He, Ar, Kr, and Xe from Transport Coefficients. Physical Review, 136(6A), pp.A1538-A1545.
Hasaani, A. and Ismail, M. (2016). Analysis of Boltzmann Equation for SF6 and Some Gas-Mixture Discharges at Critical Field Condition. Iraqi Journal of Applied Physics, 12(1), pp.31-34.
Hasaani, A., Abdulla, R. and Ismail, M. (2003). Effect of the reduced electric field strength on drifting electron swarms in SF6. Engineering and Technology, 22(3), pp.120-130.
Holstein, T. (1946). Energy Distribution of Electrons in High Frequency Gas Discharges. Physical Review, 70(5-6), pp.367-384.
Huxley, L. and Crompton, R. (1974). The diffusion and drift of electrons in gases. 1st ed. Chichester: Wiley.
Itoh, H., Matsumura, T., Satoh, K., Date, H., Nakao, Y. and Tagashira, H. (1993). Electron transport coefficients in SF6. Journal of Physics D: Applied Physics, 26(11), pp.1975-1979.
Itoh, H., Miura, Y., Ikuta, N., Nakao, Y. and Tagashira, H. (1988). Electron swarm development in SF6. I. Boltzmann equation analysis. Journal of Physics D: Applied Physics, 21(6), pp.922-930.
Itoh, H., Shimozuma, M. and Tagashira, H. (1980). Boltzmann equation analysis of the electron swarm development in SF6and nitrogen mixtures. Journal of Physics D: Applied Physics, 13(7), pp.1201-1209.
Jassim, R. and Jassim, M. (2017). Studying the Electron Energy Distribution Function (EEDF) and Electron Transport Coefficients in SF6 – He Gas Mixtures by Solving the Boltzmann Equation. Baghdad Science Journal, 14(2), pp.411-417.
Jawad, E. (2015). Dependence of electron energy distribution function and transport parameters for SF6, CO2 and (SF6 - CO2) gases mixture discharge. Journal of Chemical, Biological and Physical Sciences;Section C, 5(3), pp.4355-4367.
Laska, L. and Maaek, M. (1985). Numerical Studies of Discharge in SF6 Mixtures. In: XVII International Conference on Phenomena in Ionized Gases. Budapest: XVII International Conference on Phenomena in Ionized Gases, pp.62-63.
Li, X., Zhao, H., Jia, S. and Murphy, A. (2013). Study of the dielectric breakdown properties of hot SF6–CF4 mixtures at 0.01–1.6 MPa. Journal of Applied Physics, 114(5), p.053302.
Lisovskiy, V., Yegorenkov, V., Booth, J., Landry, K., Douai, D. and Cassagne, V. (2010). Electron drift velocity in SF6in strong electric fields determined from rf breakdown curves. Journal of Physics D: Applied Physics, 43(38), p.385203.
Malik, N. and Qureshi, A. (1980). Breakdown Gradients in SF6-N2, SF6-Air and SF6-CO2 Mixtures. IEEE Transactions on Electrical Insulation, EI-15(5), pp.413-418.
Maller, V. and Naidu, M. (1974). Growth of ionization currents in nitrogen. Journal of Physics D: Applied Physics, 7(10), pp.1406-1411.
Mohammed, H. (2009). Monte Carlo Simulation to study streamer theory in electronegative gases. Diyala Journal of Engineering Sciences, 2(2), pp.30-38.
Morgan, W. and Penetrante, B. (1990). ELENDIF: A time-dependent Boltzmann solver for partially ionized plasmas. Computer Physics Communications, 58(1-2), pp.127-152.
Moruzzi, J. (1963). Ionization and attachment in difluorodichloromethane. British Journal of Applied Physics, 14(12), pp.938-938.
Naidu, M. and Prasad, A. (1969). Diffusion and drift of electrons in dichlorodifluoromethane. Journal of Physics D: Applied Physics, 2(10), pp.1431-1436.
Nakamura, Y. (1988). Transport coefficients of electrons and negative ions in SF6. Journal of Physics D: Applied Physics, 21(1), pp.67-72.
Nasser, E. (1971). Fundamentals of gaseous ionization and plasma electronics. 1st ed. New York: Wiley-Interscience.
Novak, J. and Fréchette, M. (1985). Collisional cross sections of CCl2F2and transport coefficients of CCl2F2and N2‐CCl2F2mixtures. Journal of Applied Physics, 57(9), pp.4368-4376.
Omori, T., Shimizu, D., Matsumoto, T., Izawa, Y. and Nishijima, K. (2014). Electron swarm parameters in gas mixtures of CF3I, SF6, CO2 with N2 at atmospheric pressure. In: 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Des Moines: IEEE, pp.130-133.
Pinheiro, M. and Loureiro, J. (2002). Effective ionization coefficients and electron drift velocities in gas mixtures of SF6with He, Xe, CO2and N2from Boltzmann analysis. Journal of Physics D: Applied Physics, 35(23), pp.3077-3084.
Qiu, Y., Ren, X., Liu, Z. and Zhang, M. (1989). Measurement of ionisation and attachment coefficients in gas mixtures of difluorodichloromethane and carbon dioxide. Journal of Physics D: Applied Physics, 22(10), pp.1553-1554.
Raju, G. (2012). Gaseous electronics. 1st ed. Boca Raton, FL: CRC Press.
RAO, C. and RAJU, G. (1973). Sparking potentials and swarm coefficients in Freon and mixtures of Freon and air†. International Journal of Electronics, 35(1), pp.49-54.
Rapp, D. and Englander‐Golden, P. (1965). Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization. The Journal of Chemical Physics, 43(5), pp.1464-1479.
Rockwood, S. and Greene, A. (1980). Numerical solutions of the Boltzmann transport equation. Computer Physics Communications, 19(3), pp.377-393.
Rohr, K. (1977). Vibrational excitation of SF6by low-energy electron impact. Journal of Physics B: Atomic and Molecular Physics, 10(6), pp.1175-1179.
Rokunohe, T., Yagihashi, Y., Endo, F. and Oomori, T. (2006). Fundamental insulation characteristics of air; N2, CO2, N2/O2, and SF6/N2 mixed gases. Electrical Engineering in Japan, 155(3), pp.9-17.
Satoh, K., Itoh, H., Nakao, Y. and Takjashira, H. (1988). Electron swarm development in SF6. II. Monte Carlo simulation. Journal of Physics D: Applied Physics, 21(6), pp.931-936.
Settaouti, A. and Settaouti, L. (2005). Evaluation of Electron Swarm Parameters in SF 6 Using Monte Carlo Method. Qatar University Science Journal, 25, pp.60-71.
Settaouti, L. and Settaouti, A. (2004). Analysis of low pressure RF glow discharge sustained in SF6. Japanese Journal of Applied Physics, 6(2), pp.50-60.
Shimozuma, M., Itoh, H. and Tagashira, H. (1982). Measurement of the ionisation and attachment coefficients in SF6and air mixtures. Journal of Physics D: Applied Physics, 15(12), pp.2443-2449.
Siddagangappa, M., Lakshminarasimha, C. and Naidu, M. (1982). Electron attachment in binary mixtures of electronegative and buffer gases. Journal of Physics D: Applied Physics, 15(8), pp.L83-L86.
Siddagangappa, M., Lakshminarasimha, C. and Naidu, M. (1983). Electron mean energy, secondary ionisation coefficients and (E/p)critin binary mixtures of SF6-N2and CCl2F2-N2. Journal of Physics D: Applied Physics, 16(9), pp.1595-1601.
Smith, K. (1978). Computer modeling of gas lasers. 1st ed. New York: Springer US.
Tezcan, S., Akcayol, M., Ozerdem, O. and Dincer, M. (2010). Calculation of Electron Energy Distribution Functions From Electron Swarm Parameters Using Artificial Neural Network in $\hbox{SF}_{6}$ and Argon. IEEE Transactions on Plasma Science, 38(9), pp.2332-2339.
Trajmar, S. and Chutjian, A. (1977). Electron impact excitation of SF6. Journal of Physics B: Atomic and Molecular Physics, 10(14), pp.2943-2949.
Trajmar, S., Register, D. and Chutjian, A. (1983). Electron scattering by molecules II. Experimental methods and data. Physics Reports, 97(5), pp.219-356.
Urquijo, J., Basurto, E. and Hernández-Ávila, J. (2001). Effective ionization, electron and ion transport in SF6-He mixtures. Journal of Physics D: Applied Physics, 34(14), pp.2151-2159.
Wang, W., Murphy, A., Rong, M., Looe, H. and Spencer, J. (2013). Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. Journal of Applied Physics, 114(10), p.103301.
Wang, W., Tu, X., Mei, D. and Rong, M. (2013). Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data. Physics of Plasmas, 20(11), p.113503.
Wang, X., Zhong, L., Yan, J., Yang, A., Han, G., Han, G., Wu, Y. and Rong, M. (2015). Investigation of dielectric properties of cold C3F8 mixtures and hot C3F8 gas as Substitutes for SF6. The European Physical Journal D, 69(10), pp.420-429.
Waymel X. (1998) Low SF6 concentration SF6 / N2 Mixtures for GIL. In: Christophorou L.G., Olthoff J.K. (eds) Gaseous Dielectrics VIII. Springer, Boston, MA
Wei, L., Xu, M., Yuan, D., Zhang, Y., Hu, Z. and Tan, Z. (2014). Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2and SF6-Air Mixtures Using Boltzmann Analysis. Plasma Science and Technology, 16(10), pp.941-947.
Xiao, D., Zhu, L. and Li, X. (2000). Electron transport coefficients in SF6and xenon gas mixtures. Journal of Physics D: Applied Physics, 33(23), pp.L145-L147.
Yousfi, M., Segur, P. and Vassiliadis, T. (1985). Solution of the Boltzmann equation with ionisation and attachment: application to SF6. Journal of Physics D: Applied Physics, 18(3), pp.359-375.
Zhong, L., Yang, A., Wang, X., Liu, D., Wu, Y. and Rong, M. (2014). Dielectric breakdown properties of hot SF6-CO2 mixtures at temperatures of 300–3500 K and pressures of 0.01–1.0 MPa. Physics of Plasmas, 21(5), p.053506.
Published
2019-10-01
How to Cite
M. Othman, M., S. A. Taha, and H. Sailh2I. “Solving of the Boltzmann Transport Equation Using Two - Term Approximation for Pure Electronegative Gases (SF6, CCl2F2)”. ZANCO Journal of Pure and Applied Sciences, Vol. 31, no. s4, Oct. 2019, pp. 7-25, doi:10.21271/zjpas.31.s4.2.