Effect of Various Shapes of Silver Nanoparticles on the Performance of Plasmonic Solar Cells Active Layer

  • Rupak Wasman Qadir Physics Laboratory, Erbil Environment Office, 44001 Erbil, Iraq
  • Karwan Wasman Qadir 1-Department of Physics, College of Education, Salahaddin University-Erbil, 44001 Erbil, Kurdistan Region, Iraq , 2-Department of Physics Education, Faculty of Education, Tishk University, 44001 Erbil, Iraq
  • Shujahadeen B. Aziz 1-Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani, Kurdistan Regional Government-Iraq , 2- Komar Research Center (KRC), Komar University of Science and Technology, Sulaimani, 46001, Kurdistan Regional Government, Iraq
Keywords: CuPc; plasmonic solar cell; Finite Different Time Domain; optical absorption enhancement; Silver Nano shapes.

Abstract

In this work, the enhancement of optical absorption in organic thin film active layer was investigated theoretically. The optical absorption results reveal that the introduction of periodic silver (Ag) nanoparticles (NPs) into the thin film active layer influences the absorption spectra. In this study, copper phthalocyanine (CuPc) as one of the organic solar cell materials has been used. Finite Different Time Domain technique has been used to demonstrate the role of the three different shapes of the silver nanoparticles (SNPs). It has been found that the NPs can result in broadband optical absorption enhancement in the wavelength range (350-550) nm due to the surface plasmonic resonance (SPR) phenomena. Moreover, the investigation has been performed the effect of the few shapes of (Cylinder with radius (R) 20 nm and height (H) 60 nm, radius (R) 30 nm for Sphere NPs, and Ellipse NPs with radius R1, R2 of 20 and 30 nm respectively) on the absorption in the organic thin films.

References

ATWATER, H. A. & POLMAN, A. 2010. Plasmonics for improved photovoltaic devices. Nature materials, 9, 205.
BAFFOU, G. & QUIDANT, R. 2014. Nanoplasmonics for chemistry. Chemical Society Reviews, 43, 3898-3907.
CATCHPOLE, K. & POLMAN, A. 2008. Design principles for particle plasmon enhanced solar cells. Applied Physics Letters, 93, 191113.
CHEN, X., JIA, B., SAHA, J. K., CAI, B., STOKES, N., QIAO, Q., WANG, Y., SHI, Z. & GU, M. 2012. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano letters, 12, 2187-2192.
DJURIŠIĆ, A. B. 2019. Organic Optoelectronic Devices Materials, Models, Desine Rules.
DUCHE, D., TORCHIO, P., ESCOUBAS, L., MONESTIER, F., SIMON, J.-J., FLORY, F. & MATHIAN, G. 2009. Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Materials and Solar Cells, 93, 1377-1382.
GU, M., OUYANG, Z., JIA, B., STOKES, N., CHEN, X., FAHIM, N., LI, X., VENTURA, M. J. & SHI, Z. 2012. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 1, 235-248.
GWAMURI, J., GÜNEY, D. & PEARCE, J. 2013. Advances in Plasmonic Light Trapping in Thin‐Film Solar Photovoltaic Devices. Solar cell nanotechnology, 241-269.
LEZNOFF, C. & LEVER, A. Phthalocyanines: Properties and Applications (VCH, New York, 1989). Google Scholar.
LI, X., CHOY, W. C., HUO, L., XIE, F., SHA, W. E., DING, B., GUO, X., LI, Y., HOU, J. & YOU, J. 2012. Dual plasmonic nanostructures for high performance inverted organic solar cells. Advanced Materials, 24, 3046-3052.
MAIER, S. A. & ATWATER, H. A. 2005. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of applied physics, 98, 10.
NIESEN, B., RAND, B. P., VAN DORPE, P., CHEYNS, D., TONG, L., DMITRIEV, A. & HEREMANS, P. 2013. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode. Advanced Energy Materials, 3, 145-150.
PALIK, E. 1991. Handbook of Optical Constants of Solids, University of Maryland, College Park, U.S.A., Academic Press.
QADIR, R. W., AHMAD, Z. & SULAIMAN, K. 2014. Effect of the shapes of nanostructures on the light absorption in organic thin films. Journal of Modern Optics, 61, 636-640.
QU, D., LIU, F., HUANG, Y., XIE, W. & XU, Q. 2011. Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles. Optics Express, 19, 24795-24803.
SHAMJID, P., ANJUSREE, S., AMEEN, M. Y. & REDDY, V. 2017. Performance enhancement of polymer solar cells by incorporating Ag nanoparticles at an indium tin oxide/MoO3 buffer layer interface. Semiconductor Science and Technology, 32, 065010.
SIEGERT, B., DONARINI, A. & GRIFONI, M. 2016. Nonequilibrium spin crossover in copper phthalocyanine. Physical Review B, 93, 121406.
WANG, H., LIU, Y., LI, M., HUANG, H., XU, H., HONG, R. & SHEN, H. 2010. Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron. Adv. Mater. Rapid Commun, 4, 1166-1169.
YANG, L., XUAN, Y. & TAN, J. 2011. Efficient optical absorption in thin-film solar cells. Optics express, 19, A1165-A1174.
YANG, X., LIU, W., XIONG, M., ZHANG, Y., LIANG, T., YANG, J., XU, M., YE, J. & CHEN, H. 2014. Au nanoparticles on ultrathin MoS 2 sheets for plasmonic organic solar cells. Journal of Materials Chemistry A, 2, 14798-14806.
ZHANG, D., CHOY, W. C., XIE, F., SHA, W. E., LI, X., DING, B., ZHANG, K., HUANG, F. & CAO, Y. 2013. Plasmonic Electrically Functionalized TiO2 for High‐Performance Organic Solar Cells. Advanced Functional Materials, 23, 4255-4261.
ZHANG, Y., OUYANG, Z., STOKES, N., JIA, B., SHI, Z. & GU, M. 2012. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 100, 151101.
Published
2019-10-01
How to Cite
Wasman Qadir, R., K. Wasman Qadir, and S. B. Aziz. “Effect of Various Shapes of Silver Nanoparticles on the Performance of Plasmonic Solar Cells Active Layer”. ZANCO Journal of Pure and Applied Sciences, Vol. 31, no. s4, Oct. 2019, pp. 44-48, doi:10.21271/zjpas.31.s4.7.