Boltzmann equation studies on electron swarm parameters for oxygen plasma by using electron collision cross – sections

  • Mohammad M. Othman Department of Physics, College of Education, Salahaddin University- Erbil, Kurdistan Region, Iraq.
  • sherzad aziz taha Department of Physics, College of Education, Salahaddin University- Erbil, Kurdistan Region, Iraq.
  • Saeed Rasool Hussein Department of Physics, College of Education, Salahaddin University- Erbil, Kurdistan Region, Iraq.
Keywords: Boltzmann equation, Electron energy distribution function (EEDF), Electron transport parameters, Critical field strength, Electric discharge.

Abstract

The Boltzmann transport equation has been solved using a two-term approximation method in pure electronegative gas oxygen to evaluate the electron energy distribution function (EEDF) and electron transport parameters for a wide range of E/N varying from 0.1 to 1000 Td (1 Td=10-17 V.cm2). These parameters, are “electron drift velocity, mean electron energy, characteristic energy, diffusion coefficients, electron mobility, attachment and ionization coefficients, effective ionization coefficient and critical reduced electric field strength (E/N)crt”..The dependence of second kind collision (super-elastic collision) and electron energy distribution function on E/N are explained (where E is electric field and N is neutral number density). The present calculated results are in good agreements as compared, with the previous experimental and theoretical results. A group of electron/molecule collision (elastic and inelastic) cross-sections are collected for oxygen gas to evaluate transport parameters over the entire E/N range. In addition, the energy lost by different types of electron/molecule collision processes are computed as a function of E/N.

References

Al-Amin, S. A. J., Kucukarpaci, H. N. and Lucas, J. (1985), Electron swarm parameters in oxygen and methane. J. Phys. D: Appl. Phys., 18(9), pp. 1781-1794.
Al-Amin, S. and Lucas, J. (1988). Electron swarms in mixtures of metal vapour and argon gas. Journal of Physics D: Applied Physics, 21(8), pp.1261-1270.
Alves, L. L., Coche, P., Ridenti, M. A. and Guerra, V. (2016). Electron scattering cross sections for the modeling of oxygen-containing plasmas. Eur. Phys. J. D, 70, pp.124-13.
Beaty, E. C., Dutton J. and Pichford, L. C. 1979. A bibliography of electron swarm data. JILA (Joint Institution for Laboratory Astrophysics). Information Center Report No. 20.
Bousoltane, K. and Kieffel, Y. (2018). Investigation on the influence of the O2 content in fluoronitrile/CO2/O2(g3) mixtures on the breaking in high voltage circuit breakers. In International Conference on Gas Discharges and their Applications.
Brand, K. P. and Kopainsky, J. (1979). Breakdown field strength of unitary attaching gases and gas mixtures. Appl. Phys. 18(4), pp. 321-333.
Crompton, R. W. and Elford, M. T. (1973). The drift velocity of electrons in oxygen at 293K. Ast. J. Phys., 26, pp. 771-782.
Dujko, S., Ebert, U., White, R. D., and Petrovic, Z. L. (2011). Boltzmann equation analysis of electron transport in a N2-O2 streamer discharge. Japanese Journal of Applied Physics, 50, 08JC01 (6pp).
Dutton, J. 1975. A survey of electron swarm data. J. Phys. Chem. Ref. Data, 4(3), pp. 577-856.
Eguz, E. A., Chachereau, A., Hosl, A. and Franck, C. M. (2019). Measurements of swarm parameters in C4F7N/O2/CO2, C5F10O/O2/CO2 and C5F10O/O2/N2 mixtures. The 19th International Symposium on High Voltage engineering, Budapest, Hungary, August, 26-30.
Engelhardt, A. G. and phelps, A. V. (1963). Elastic and inelastic collision cross sections in hydrogen and deuterium from transport coefficients. Phys. Rev., 131(5), pp. 2115-2128.
Fridman, A. 2008. Plasma chemistry. 2nd ed., Cambridge University Press, Drexel.
Govinda-Raju, G. 2006. Gaseous Electronics: Theory and practice, Taylor and Francis LLc, Boca Raton, USA.
Govinda-Raju, G. 2012. Gaseous Electronics, Tables, Atoms, Molecules, Taylor and Francis LLc, Boca Raton, USA.
Govinda-Raju, G. 2017. Analysis of discharge parameters for applications in plasma devices. Progress In Electromagnetics Research Symposium, Fall (PIERS-FALL), Singapore, 19-22 November.
Gousset, G., Ferreira, C. M., Pinheiro, M., Sa, P. A. Touzeau, M., Vialle, M. and Loureiro, J. (1991). Electron and heavy-particle kinetics in the low pressure oxygen positive column. J. Phys. D: Appl. Phys., 24(3), pp. 290-300.
Graves, D. (2014). Low temperature plasma biomedicine: A tutorial review, Phys. Plasmas 21, 080901(11pp).
Guerra, V., Rejero-del-Caz, A., Pintassllgo, C. D. and Alves, L. L. (2019). Modelling N2-O2 plasmas: volume and surface kinetics. Plasma Sources Sci. Technol. 28, 073001 (38pp).
Hake Jr, R. D. and Phelps, A. V. (1967). Momentum transfer and inelastic collision cross sections for electrons in O2, CO and CO2. Phys. Rev., 158(1), pp. 70-84.
Hangelaar, G. J. M. and Pichford, L. C. 2005. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol., 14(4), pp. 722-733.
Hartney, M. A., D. W. Hess, and D. S. Soane (1989). Oxygen plasma etching for resist stripping and multilayer lithography. J. Vac. Sci. Technol. B, 7 (1), 1–13.
Hernandez-Avila, J. L. and Urquijo, J. D. (2006). Measurement of electron transport and effective ionization in SF6-air and SF6-O2 mixtures. J. Phys. D: Appl. Phys., 39(4), pp. 647-651.
Hien, P. X., Tuan, D. A. and Jeon, B. H. (2012). Electron collision cross sections for the TMS molecule and electron transport coefficients in TMS-Ar and TMS-O2 mixtures. Journal of the Korean Physical Society, 61(1), pp. 62-72.
Huxley, L. G. H., Crompton, R. W. and Bagot, C. H. 1959. A new method for measuring the attachment of slow electrons in gases. Australian Journal of Physics, 12(3), pp. 303-308.
Itoh, H., Shimozuma, M. and Tagashira, H. (1980). Boltzmann equation analysis of the electron swarm development in SF6 and nitrogen mixtures. J. Phys. D: Appl. Phys., 13(7), pp. 1201-1209.
Jeon, B. H., Ha, S. C., Paek, S. K. and Nakamura, Y. (1997). Momentum transfer cross section for oxygen molecule by electron transport coefficients in the O2-Ar mixtures and in pure O2 molecule. Proceeding of the 5th International Conference on Properties and Applications of Dielectric Materials, May 25-30, Seol, Korea.
Jeon, B. H. and Nakamura, Y. (1998). Measurement of drift velocity and longitudinal diffusion coefficient of electrons in pure oxygen and in oxygen-argon mixtures. J. Phys. D: Appl. Phys., 31(17), pp. 2145-2150.
Jeon, B. H. (2003). Determination of electron collision cross sections for oxygen molecule by using an electron swarm study. Journal of the Korean Physical Society, 43(4), pp. 513-525.
Jiang, P. and Economou, D. J. (1993). Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under dc and ac fields. J. Appl. Phys., 73(12), pp. 8151-8160.
Láska, L., Mašek, K., Krasa, J. and Perina, V. (1984). Dielectric properties of SF6 mixtures containing oxygen and other gases. Czech. J. Phys. B, 34, pp. 1038-1047.
Leyla, Z., Leila, M. and Mebarek, D. (2011). Monte-Carlo Simulation for an electrical discharge in O2. Advanced Materials Research, 337, pp. 211-214.
Li X., Zhao H. and Jia S. (2012). Dielectric breakdown properties of SF6–N2 mixtures in the temperature range 300–3000K. J. Phys. D: Appl. Phys., 45(44), 445202(7pp).
Linsheng, W., Min, Xu. and Dingkun, Y. (2014). Electron transport coefficients and ionization coefficients in SF6-O2 and SF6-air mixtures using Boltzmann analysis. Plasma Science and Technology, 16(10), pp. 941-947.
Liu, J. and Govinda Raju, R. G. (1992). Calculation of electron swarm parameters in oxygen using a rigorous Boltzmann equation analysis. Can. J. Phys., 70, pp. 216-224.
Liu, J. and Govinda Raju, R. G. (1993). Electron swarm parameters in nitrogen oxygen and air. IEEE Transactions on Electrical Insulation. 28(1), pp. 154-156.
Loureiro, J. and Amorim, J. 2016. Kinetics and Spectroscopy of Low Temperature Plasmas. Springer.
Lu, X. Laroussi, M. and V Puech, V. 2012. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21(3), 034005 (17pp).
Lucas, J., Price, D. A. and Moruzzi, J. L. (1973). The calculation of electron energy distributions and attachment coefficient for electron swarm in oxygen. J. Phys. D: Appl. Phys., 6(12), pp. 1503-1513.
Makabe, T. and Petrovic, Z. L. 2015. Plasma Electronics Applications in Microelectronic
Device Fabrication, 2nd ed., CRC Press Taylor & Francis Group.
Mašek, K. (1975). An analytical approach to the distribution functions of electrons in the molecular oxygen discharge, Czech. J. Phys. B, 25(6), pp. 686-700.
Mašek, K., Růžička, T. and Láska, L. (1977a). Electron gas in molecular oxygen discharge. Czech. J. Phys. B, 27(8), pp. 888-898.
Mašek, K., Láska, L. and Růžička, T. (1977b). Dissociative attachment coefficient in oxygen. J. Phys. D: Appl. Phys., 10, L25-L28.
McNevin, S. C. (1990). Radio frequency plasma etching of Si/Sio2 by Cl2/O2 : Improvements resulting from the time modulation of the processing gases. J. Vac. Sci. Technol. B, 8(6), pp. 1185-1191.
Morgan, W. L. and Penetrante, B. M. (1990). ELENDIF: A time dependent Boltzmann solver for partially ionized plasmas. Computer Physics Communications, 58(1-2), pp. 127-152.
Myers, H. (1969). Analysis of electron swarm experiments in oxygen. J. Phys. B: Atom. Molec. Phys., 2(2), pp. 393-402.
Nakamura, V. and Lucas, J. 1978. Electron drift velocity and momentum cross-section in mercury, sodium and thallium vapors. II. Theoretical, J. phys. D: Appl. Phys., 11(3), 337-345.
Nelson, R. D. and Davis, F. J. (1972). Thermal and near thermal electron transport coefficients in O2 determined with a time-of- light swarm experiment using Drift Dewell . J. Chem. Phys., 56(10), pp. 4079-4084.
Nighan, W. L. (1970). Electron energy distributions and collision rates in electrically excited N2, CO, and CO2. Phys. Rev., 2(5), pp. 1989-2000.
Nikitovic, Z., Stojanovic, V. and Petrovic Z. (2010). Transport coefficients for electron scattering in mixtures of CF4, Ar and O2. Publ. Astron. Obs. Belgrade, 89, pp. 75-78.
Nikitovic, Z., Stojanovic, V. and Radmilovic-Radjenovic, M. (2011). Transport coefficients for electron in mixtures CF4/Ar/O2 and CF, CF2 or CF3 radicals. Acta Physica Polonica A, 120(2), pp. 289-291.
Othman, M. M., Taha, S. A., Mohammad, J. J. and Karem, A. S. 2018. Electron swarm parameters in Germane – Argon mixtures using Boltzmann equation. ZANCO Journal of Pure and Applied Sciences, 30 (1), pp. 34-43.
Othman, M. M., Taha, S. A. and Salih, I. H. 2019a. Analysis of electron transport coefficients in SiH4 gas using Boltzmann equation in the presence of applied electric field. ZANCO Journal of Pure and Applied Sciences, 31 (1), pp. 77-88.
Othman, M. M., Taha, S. A. and Salih, I. H. 2019b. Solving of the Boltzmann transport equation using two - term approximation for pure electronegative gases (SF6, CCl2F2). ZANCO Journal of Pure and Applied Sciences, 31 (s4), pp. 7-25.
Pancheshnyi, S. (2013). Effective ionization rate in nitrogen-oxygen mixtures. J. Phys. D: Appl. Phys., 46(15), 155201 (8pp).
Phelps, A. (1985). Tabulations of collision cross sections and calculated transport and reactions coefficients for electron collisions with O2. JILA Information Center Report No.28, university of Colorado, Colorado.
Price, D. A. and Moruzzi, J. L. (1973). Ionization in mixtures of oxygen and carbon monoxide. J. Phys. D: Appl. Phys., 6(2), pp. L17-L19.
Rapp, D. and Englander-Golden, P. (1965). Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization. J. Chem. Phys., 43(5), pp. 1464-1479.
Rabie, M. and Franck, C. M. (2016). METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasma. Computer physics communication, 203, pp. 268-277.
Reid, I. D. and Crompton, R. W. (1980). The drift velocity of low energy electrons in oxygen at 293K., Aust. J. Phys., 33, pp. 215-226.
Ridenti M. A. and Amorim J., (2012), A numerical solver for the homogeneous Boltzmann Equation” Physics Proceeding, XI Young Researchers Meeting, pp.6-5.
Ridenti, M. A., Alves, L. L., Guerra, V. and Amorim, J. (2015). The role of rotational mechanisms in electron swarm parameters at low reduced electric field in N2, O2 and H2. Plasma Sources Sci. Technol., 24, 035002(16 pp).
Rockwood, S. D. and Greene, A. E. (1980). Numerical solutions of the Boltzmann transport equation. Computer Physics Communications, 19(3), pp. 377-393.
Rong, M., Sun, H., Fei Yang, F., Wu, Y., Chen, Z., Wang, X. and Wu, M. (2014). Influence of O2 on the dielectric properties of CO2 at the elevated temperatures. Physics of Plasmas, 21(11), 112117 (13pp).
Roznerski, W. and Leja, K. (1984). Electron drift velocity in hydrogen, nitrogen, oxygen, carbon monoxide, carbon dioxide and air at moderate E/N. J. Phys. D: Appl. Phys., 17(2), pp. 279-285.
Rapp, D. and Englander-Golden, P. (1965). Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization. J. Chem. Phys., 43(5), pp. 1464-1479.
Sakai Y., Tagashira H. and Sakamoto S. (1977). The development of electron avalanches in argon at high E/N values: I. Monte Carlo simulation. J. Phys. D: Appl. Phys., 10(7), pp. 1035-1049.
Settaouti, A. and Settaouti L. (2007). Monte Carlo simulation of electron swarm parameters in O2. Eur. Phys. J. Appl. Phys., 37, pp. 335-341.
Settaouti, A. (2018). Characterization of point-plane corona discharge in oxygen with Monte Carlo method. Physics Journal, 4(1), pp. 1-8.
Smith K. and Thomson R. M. (1978). Computer Modeling of Gas Lasers, Plenum Press.
Tanaka, Y. (2004). Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300-3500K. J. Phys. D: Appl. Phys., 37(6), pp. 851-859.
Taniguchi, T, Tagashira, H., Okada, I. and Sakai, Y. (1978). Three-body attachment in oxygen. . J. Phys. D: Appl. Phys., 11(16), pp. 2281-2284.
Tatarova, E., Bundaleska, N. Sarrette, J. Ph. and Ferreira, C. M. (2014). Plasmas for environmental issues: from hydrogen production to 2D materials assembly, Plasma Sources Sci. Technol. 23, 063002 (52pp).
Tejero-del-Caz, A., Guerra , V., Gonçalves , D., Lino da Silva, M., Marques, L., Pinhão, N., Pintassilgo, C. D. and Alves, L. L. (2019). The LisbOn KInetics Boltzmann solver. Plasma Sources Sci. Technol., 28(4), 043001 (21pp).
Thomson, R. M. and Smith, K. (1976). Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields. Computer Physics Communications, 11(3), pp. 369-383.
Thorsteinsson, E. G. and J. T. Gudmundsson (2010). The low pressure Cl2/O2 discharge and the role of ClO. Plasma Sources Sci. Technol. 19 (5), 055008 (17pp).
Tuan, D. A. and Jeon, B. H. (2012). Electron collision cross sections for the tetraethoxysilane molecule and electron transport coefficients in tetraethoxysilane–O2 and tetraethoxysilane–Ar mixtures. Journal of the Physical Society of Japan, 81, 064301 (8pp).
Tuan, D. A. (2014). Calculations of electron transport coefficients in Cl2-Ar, Cl2-Xe and Cl2-O2 mixtures. Journal of the Korean Physical Society, 64(1), pp. 23-29.
Tuoi, P. T., Tuan, D. A. and Hien, P. X. (2018). Electron collision cross sections for the TRIES molecule and electron transport coefficients in TRIES-Ar and TRIES-O2 mixtures. Journal of the Physical Society of Japan, 73(12), 1855-1862.
Wagner, K. H. (1971). Ionization, electron attachment, detachment, and charge transfer in oxygen and air. Z. Phys., 241, pp. 258-270.
Xiao, S., Tian, S., Cressault, Y., Zhang, X., Tang, J., Li, Y. and Deng. Z. (2018). Study on the influence of O2 on the breakdown voltage and self-recovery characteristics of c-C4F8/N2 mixture. AIP Advances, 8(8), 085121 (10pp).
Yoshida, K., Tagashira, H., Ohshima, T., Ohuchi, H. and Kishimoto, Y. (1996). Measurement of the Townsend first ionization coefficient in tetraethoxysilane and oxygen mixtures. J. Phys. D: Appl. Phys., 29(8), pp. 2124-2128.
Yousfi, M., Urquijo, J. D., Juárez, A., Basurto, E. and Hernández-Ávila, J. L. (2009). Electron Swarm Coefficients in CO2–N2 and CO2–O2 Mixtures. IEEE Transactions on Plasma Science, 37(6), pp. 764-772.
Zhao, H. and Lin, H. (2016). Dielectric breakdown properties of N2–O2 mixtures by considering electron detachments from negative ions. Physics of Plasmas, 23(7), 073505 (7pp).
Zhao, H., Deng, Y. and Lin, H. (2017). Study of the synergistic effect in dielectric breakdown property of CO2-O2 mixtures. AIP Advances, 7(9), 095102 (21pp).
Zhao, H., Tian, Z., Deng, Y., Li, X. and Lin, H. (2017). Study of the dielectric breakdown properties of CO2–O2 mixtures by considering electron detachments from negative ions. Journal of Applied Physics 122(23), 233303 (8pp).
Published
2020-10-13
How to Cite
M. Othman, M., taha, sherzad and Rasool Hussein, S. (2020) “Boltzmann equation studies on electron swarm parameters for oxygen plasma by using electron collision cross – sections”, Zanco Journal of Pure and Applied Sciences, 32(5), pp. 36-53. doi: 10.21271/ZJPAS.32.5.4.
Section
Mathematics ,Physics and Engineering Researches