Evaluating the prevalence of virulence factor gene and biofilm production in Pseudomonas aeruginosa isolated from different clinical samples.

  • Bashdar Mahmud Hussen Department of Pharmacognocy, College of Pharmacy, Hawler Medical University-Erbil, Kurdistan Region, Iraq
Keywords: Pseudomonas aeruginosa, Bla exoS gene, Antibiotic resistance, Biofilm

Abstract

Pseudomonas aeruginosa is considered a resourceful pathogen; which has several essential virulence effectors such as exoenzyme, exotoxin and biofilm might help to it is infection. This study aimed to investigate the frequency of exoS gene, the determination of biofilm production and antimicrobial resistance among clinical samples of P. aeruginosa. In our study, 227 specimens of P. aeruginosa collected from different clinical specimens which were attending public hospitals in Erbil city. Antimicrobial resistance of samples identified by Kirby-Bauer disk diffusion method. Through PCR virulence gene exoS was studied. Biofilm production measured by both Congo Red Agar (CRA) and tissue culture plate method (TCP). Among 227 clinical samples, 40 (17.6%) were positive for P. aeruginosa. Imipenem was showed most effective antibiotic 95% against P. aeruginosa. Incidence of exoS gene was 70% within the P. aeruginosa isolates. Moreover, around 75% of clinical samples produced biofilm and approximately 40% of them produced strong biofilm. Our study showed that the incidence of bla exoS gene and biofilm formation, which are common virulence factors in the clinical samples, especially in burn patients, and are a severe problem in the treatment of the patient.  

References

AHMED, A. A. & SALIH, F. A. 2019. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complement Altern Med, 19, 177.
AKA, S. & HAJI, S. 2015. Evaluation of multi drug resistance among extended spectrum β-lactamase-producing Escherichia coli causing urinary tract infection in Erbil City. Zanco Journal of Medical Science, 19, 998-1004.
AMIRMOZAFARI, N., FALLAH MEHRABADI, J. & HABIBI, A. 2016. Association of the Exotoxin A and Exoenzyme S with Antimicrobial Resistance in Pseudomonas aeruginosa Strains. Arch Iran Med, 19, 353-8.
AZEEZ, B. & BAKR, K. 2019. Phenotypic and Molecular Detection of Metallo-β –Lactamase Producing Pseudomonas aeruginosa. ZJPAS, 31, 46-56.
AZIMI, A., PEYMANI, A. & POUR, P. 2018. Phenotypic and molecular detection of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates from patients with burns in Tehran, Iran. Revista da Sociedade Brasileira de Medicina Tropical, 51, 610-615.
AZIMI, S., KAFIL, H. S., BAGHI, H. B., SHOKRIAN, S., NAJAF, K., ASGHARZADEH, M., YOUSEFI, M., SHAHRIVAR, F. & AGHAZADEH, M. 2016. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. GMS Hyg Infect Control, 11, Doc04.
BAHADOR, N., SHOJA, S., FARIDI, F., DOZANDEH-MOBARREZ, B., QESHMI, F. I., JAVADPOUR, S. & MOKHTARY, S. 2019. Molecular detection of virulence factors and biofilm formation in Pseudomonas aeruginosa obtained from different clinical specimens in Bandar Abbas. Iran J Microbiol, 11, 25-30.
CANDEL, F. J., RICO, C. M., DIAZ DE LA TORRE, I., LAGUNA, B., MARTINEZ-JORDAN, J., MEDRANO, S., ESCOBAR-PORCEL, M. C., LOPEZ-DELGADO, A., LOPEZ-GONZALEZ, L., VINUELA-PRIETO, J. M., MATESANZ, M., GONZALEZ DEL CASTILLO, J. & ARRIBI, A. 2019. Update in Infectious Diseases 2019. Rev Esp Quimioter, 32 Suppl 2, 1-9.
GEORGESCU, M., GHEORGHE, I., CURUTIU, C., LAZAR, V., BLEOTU, C. & CHIFIRIUC, M. C. 2016. Virulence and resistance features of Pseudomonas aeruginosa strains isolated from chronic leg ulcers. BMC Infect Dis, 16 Suppl 1, 92.
HAJI S. H. 2018. Detection of Biofilm Formation in Pseudomonas aeruginosa Isolates from Clinical Specimens. ZJPAS, 30, 83-89.
HORNA, G., AMARO, C., PALACIOS, A., GUERRA, H. & RUIZ, J. 2019. High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep, 9, 10874.
JABALAMELI, F., MIRSALEHIAN, A., KHORAMIAN, B., ALIGHOLI, M., KHORAMROOZ, S. S., ASADOLLAHI, P., TAHERIKALANI, M. & EMANEINI, M. 2012. Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns, 38, 1192-7.
KANG, D., REVTOVICH, A. V., CHEN, Q., SHAH, K. N., CANNON, C. L. & KIRIENKO, N. V. 2019. Pyoverdine-Dependent Virulence of Pseudomonas aeruginosa Isolates From Cystic Fibrosis Patients. Front Microbiol, 10, 2048.
MAGIORAKOS, A. P., SRINIVASAN, A., CAREY, R. B., CARMELI, Y., FALAGAS, M. E., GISKE, C. G., HARBARTH, S., HINDLER, J. F., KAHLMETER, G., OLSSON-LILJEQUIST, B., PATERSON, D. L., RICE, L. B., STELLING, J., STRUELENS, M. J., VATOPOULOS, A., WEBER, J. T. & MONNET, D. L. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 18, 268-81.
MINASYAN, H. 2019. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med, 27, 19.
MINGXIANG, Z., HAICHEN, W., JIAN, S., JUN, L., YONGMEI, H., QINGYA, D., QUN, Y. & WEN' EN, L. 2018. Characterization of clinical extensively drug resistant Pseudomonas aeruginosa from a Chinese teaching hospital. The Journal of Infection in Developing Countries, 12.
PACHORI, P., GOTHALWAL, R. & GANDHI, P. 2019. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis, 6, 109-119.
POBIEGA, M., MACIAG, J., CHMIELARCZYK, A., ROMANISZYN, D., POMORSKA-WESOLOWSKA, M., ZIOLKOWSKI, G., HECZKO, P. B., BULANDA, M. & WOJKOWSKA-MACH, J. 2015. Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa strains isolated from patients with urinary tract infections in Southern Poland. Diagn Microbiol Infect Dis, 83, 295-7.
RUFFIN, M. & BROCHIERO, E. 2019. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol, 9, 182.
THARWAT, N., ABOU EL-KHIER, N., EL-KAZZAZ, S., EL-GANAINY, A.-E.-R. & ELGANAINY, A. 2017. Quorum sensing-dependent virulence factors and biofilm formation of Pseudomonas aeruginosa isolates from retrieved orthopedic implants. Egyptian Journal of Medical Microbiology, 26, 137-143.
VERDEROSA, A. D., TOTSIKA, M. & FAIRFULL-SMITH, K. E. 2019. Bacterial Biofilm Eradication Agents: A Current Review. Front Chem, 7, 824.
WANG, T., HOU, Y. & WANG, R. 2019. A case report of community-acquired Pseudomonas aeruginosa pneumonia complicated with MODS in a previously healthy patient and related literature review. BMC Infect Dis, 19, 130.
YIN, W., WANG, Y., LIU, L. & HE, J. 2019. Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci, 20.
YOUSEFI-AVARVAND, A., KHASHEI, R., SEDIGH EBRAHIM-SARAIE, H., EMAMI, A., ZOMORODIAN, K. & MOTAMEDIFAR, M. 2015. The Frequency of Exotoxin A and Exoenzymes S and U Genes Among Clinical Isolates of Pseudomonas aeruginosa in Shiraz, Iran. Int J Mol Cell Med, 4, 167-73.
Published
2020-09-08
How to Cite
Hussen, B. (2020) “Evaluating the prevalence of virulence factor gene and biofilm production in Pseudomonas aeruginosa isolated from different clinical samples.”, Zanco Journal of Pure and Applied Sciences, 32(4), pp. 108-113. doi: 10.21271/ZJPAS.32.4.13.
Section
Biology and Medical Researches