Existence of solution for some quasi-homogenous and quasi-elliptic Nonlinear Eigenvalue Problems

Main Article Content

Fatima M. ABOUD

Keywords

Nonlinear eigenvalue problems, spectra, trace, quasi-elliptic operators, quasi-homogeneous operators.

Abstract

The existence of solutions for a non linear eigenvalue problems is well studied and proved for n even. In this article we will study the case of odd dimension n>1 for the family of quasi-homogeneous and quasi-elliptic operators and we will give some examples for the case n=3. We study the conditions for which we can prove the existence of non trivial solution for each case.

Abstract 26 | PDF Downloads 20

References

[Aboud, 2009] F.Aboud. Ph.D Thesis, Problèmes aux valeurspropres non-linéaires. University of Nantes, May 2009. https://tel.archives-ouvertes.fr/tel-00410455.
[Aboud, 2010] F.Aboud and D. Robert. Asymptotic expansion for nonlinear eigenvalue problems. Journal de MathématiquesPures et Appliquées. 93 (2), pp.149-162 (2010).
[Aboud, 2018] F.Aboud. Asymptotic expansion for nonlinear eigenvalue problems. ,Volume: 14 Issue: 4 Pages: 88-104 (2018).
[Beals, 1977] R.Beals : A general calculus of pseudo-differential operators, Duke Math. J., 44,1977.
[Chanillo, Helffer, Laptev, 2004] SagunChanillo,BernardHelffer, Ari Laptev : Nonlinear eigenvalues and analytic hypoelipticity, June 21, 2003 (ce travail estpubliéen 2004 en "journal of analysis functional").
[Helffer, 1979] BernardHelffer : Remarques sur des résultats de G. Métivier sur la non-hypo-analyticité, Séminaire de l’Université de Nantes, exposé No.9, 1978-1979.
[Helffer, Robert, 2003] BernardHelffer, Didier Robert : Semiclassical Analysis of nonlinear eigenvalue problem and non analytic hypoellipticity, October 21, 2003.
[Helffer, Robert, 1982] BernardHelffer, Didier Robert : Propriétésasymptotiques du spectred’opérateurs pseudo-différentiels sur R^n, Comm. in P.D.E.,Vol.7,p.795-882, 1982.
[Helffer, Robert, Wang, 2005] BernardHelffer, D. Robert, Xue Ping Wang : Semiclassical analysis of a non linear eigenvalue problem and analytique hypoellipticity, St-Petersburg Mathematical Journal, Vol. 16, No 1, p. 285-296, 2005.
[Gohberg, Krein, 1972] I.Gohberg et M. G. Krein : Introduction à la théorie des opérateurslinéaires non autoadjoints, Dunod, 1972.
[Keldysh, 1951] M. V. Keldysh : Valeurspropres et fonctionpropres de certaines classes d’équationsnon auto-adjointes, DAN,77,No. 1, 11-14, (1951).
[Kelydsh, 1971] M. V. Keldysh : On the completness of the eigenfunctions of classes of non-selfadjoint linear operators, Russian Math. Surveys 26, No.4, 15-44, (1971).
[Markus] A.S. Markus : Introduction to the spectral theory of polynomial operator pencils, vol.71, Translation of mathematical monographs. American Mathematical Society.
[Müller, 1961]P.H.Müller:EigenwertabschtzungenfürGleichungenvomTyp(λ^2 I-λA-B)x=0, 12,Nr.4, Arch. Math., p.307-310, 1961.
[Pham, Robert, 1980] Pham The Lai, Didier Robert : Sur un problème aux valeurspropres non linéaire, Israel journal of mathematics, vol.36, No.2, p.169-186, 1980.
[Christ] M. Christ : Some non-analytic-hypoelliptic sums of squares of vector fields, Bull.A.M.S., vol.26, No.1, p.137-140, 1992.
[Robert, 2004] Didier Robert : Non linear eigenvalue problems, MatemàticaContemporânea, vol.26, p.109-127, 2004.
[Robert, 1978] Didier Robert : Propriétésspectralesd’opérateurspseudodifferentiels, Comm. Partial Differential Equitions, 3 (1978),755-826.
[Robert, 1987] Didier Robert : Autour de l’approximation semi-classique, Progress in Mathematics no.68, Birkhäuser, (1987).
[Rndeaux, 1984] C.Rndeaux: Classe de Schattend’opérateurs pseudo-différentiels, Annales scientifiques de l’É.N.S, 4^e série, tome 17, no. 1, 67-81, (1984).