Best Error Bounds for Splines of Degree Seven

Keywords: Interpolation polynomial, splines function, error bounds, convergence analysis.

Abstract

In this paper, we construct a spline method to solving a interpolation problem using spline polynomial of degree seven which agree with the given function and it’s second derivative at knots and the function at mid points and the second derivative at (1/3) points also. This new class of spline interpolates provides a large accuracy in the choice of the error bounds.

Downloads

Download data is not yet available.

References

Ahlberg, J. H., Nilson, E. N., and Walsh, J. L. 1967, The Theory of Splines and their Applications, Academic press, New York and London.
Al Bayati, A. Y., Saeed, R. K. and Hama-Salh, F. K., 2009, Existence, Uniqueness and Error Bounds of Approximation Splines Interpolation for Solving Second-Order Initial Value Problems, Journal of Mathematics and Statistics, 5 (2):123-129, ISSN 1549-3644.
Davis P. J., 1961, Interpolation and Approximation Blaisedell, New York.
El Tarazi M. N. and Sallam S., 1990, Interpolation by quadratic spline with periodic derivative on uniform meshes, Journal of Computational and Applied Mathematics, Vol. 33, pp. 207-314.
Ezio Venturino, 1996, On the (0, 4) lacunary interpolation problem and some related questions, Journal of Computational and Applied Mathematics, Vol. 76, pp. 287-300.
François Dubeau and Jean Savoie, 1985, Periodic even degree spline interpolation on a Uniform partition, Journal of Approximation Theory, Vol. 44, pp. 43-54.
John E. Lavery, Hao Cheng and Shu-Cherng Fang, 2005, A Geometric Programming Framework for Univariate Cubic L1 Smoothing Splines, Annals of Operations Research, 133, 229–248.
Karwan H-F Jwamer, Faraidun K. Hamasalh, , 2012, On Optimality of Lacunary Interpolation for Recovery of C6 Seventh Degree Spline, Int. J. Open Problem Compt. Math., Vol. 5, No. 1, 103-113.
Meyer W. W. and Hall C. A., 1976, Optimal Error Bounds for Cubic Spline Interpolation, J. Approx., vol. 16, pp. 105-122.
Rand S. S. and Dubey Y. P. , 1997, Best error bounds of deficient quantic spline interpolation, Indian J. Pure Appl. Math., Vol. 28 (10), pp. 1337-1344.
Rana S. S., Dubey Y. P. and Gupta P., 2011, Best error bound of deficient C1 quadratic spline interpolation, vol. 6, pp. 147-155.
Sallam S., Anwar M. N. , 1999, One parameter quadratic C1-spline collocation method for solving first order ordinary initial value problems, Applied Mathematical Modeling, Vol. 23, 153-160.
Varma A. K., 1973, (0, 2) lacunary interpolation spline I, Acta Math Acad. Sci. Hungar., Vol. 31(3-4), pp. 443-447.
Varma, A. K., 1978, Lacunary interpolation splines II, (0, 4) and (0, 1, 3) cases, Acta Math. Acad. Sci. Hungar., 31(3-4), pp.193-203.
Published
2016-11-28
How to Cite
“Best Error Bounds for Splines of Degree Seven” (2016) Zanco Journal of Pure and Applied Sciences, 28(5), pp. 33-40. doi: 10.21271/zjpas.v28i5.403.
Section
Articles